Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) song song và cách đều hai đường thẳng d1: \(\dfrac{x-2}{-1}=\dfrac{y}{1}=\dfrac{z}{1}\) và d2: \(\dfrac{x}{2}=\dfrac{y-1}{-1}=\dfrac{z-2}{-1}\)
Trong không gian Oxyz, phương trình mặt phẳng (P) song song và cách đều hai đường thẳng d 1 : x - 2 - 1 = y 1 = z 1 , d 2 : x 2 = y - 1 - 1 = z - 2 - 1 là?
A. (P):2y-2z+1=0.
B. (P):2x-2z+1=0.
C. (P):2x-2y+1=0.
D. (P):2y-2z-1=0.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 2 và hai đường thẳng d: x - 2 1 = y 2 = z - 1 - 1 , ∆ : x 1 = y 1 = z - 1 - 1 . Phương trình nào dưới đây là phương trình của một mặt phẳng tiếp xúc với (S), song song với d và ∆ ?
A. x+z+1=0
B. x+y+1=0
C. y+z+3=0
D. x+z-1=0
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 3 và hai đường thẳng d x : x - 2 1 = y 2 = z - 1 - 1 ; △ : x 1 = y 1 = z - 1 - 1 Phương trình nào dưới đây là phương trình mặt phẳng cắt mặt cầu (S) theo giao tuyến là một đường tròn (C) có bán kính bằng 1 và song song với d và △ .
Trong không gian Oxyz, mặt phẳng (P) đi qua điểm A(1;-1;3) song song với hai đường thẳng d : x - 4 1 = y + 2 4 = z - 1 - 2 , d ' : x - 2 1 = y + 1 - 1 = z - 1 1 có phương trình là:
Lập phương trình mặt phẳng (P) chứa đường thẳng d: x = - 2 - t y = 1 + 4 t z = 1 - t và song song với d 1 x - 1 1 = y - 1 4 = z - 1 - 3
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;-1;-2) và đường thẳng d có phương trình x - 1 1 = y - 1 - 1 = z - 1 1 . Gọi (P) là mặt phẳng đi qua điểm A, song song với đường thẳng d và khoảng cách từ đường thẳng d tới mặt phẳng (P) là lớn nhất. Khi đó, mặt phẳng (P) vuông góc với mặt phẳng nào sau đây?
Trong không gian Oxyz, cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 và mặt phẳng (P):x-y-z-1=0. Phương trình đường thẳng Δ đi qua A (1;1;-2), song song với mặt phẳng (P) và vuông góc với đường thẳng d là:
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-1;1) mặt phẳng (P):x-2y+z-1=0 và đường thẳng d : x 1 = y - 2 2 = z - 1 - 1 . Viết phương trình đường thẳng đi qua A, song song với mặt phẳng (P) cắt đường thẳng d.