Đáp án C.
Ta có I ∈ O y ⇒ I 0 ; i ; 0 , i > 0.
O x z : y = 0 ⇒ d I ; O x z = R = 4 ⇔ i 4 = 4 ⇒ i = 4 ⇒ I 0 ; 4 ; 0 ⇒ x 2 + y − 4 + z 2 = 16.
Đáp án C.
Ta có I ∈ O y ⇒ I 0 ; i ; 0 , i > 0.
O x z : y = 0 ⇒ d I ; O x z = R = 4 ⇔ i 4 = 4 ⇒ i = 4 ⇒ I 0 ; 4 ; 0 ⇒ x 2 + y − 4 + z 2 = 16.
Cho mệnh đề:
1) Mặt cầu có tâm I(3;-2;4) và đi qua A(7;2;1) là ( x - 3 ) 2 + ( y + 2 ) 2 + ( z - 4 ) 2 = 41
2) Mặt cầu có tâm I(2;-1;3) và tiếp xúc với mp (Oxy) là ( x - 2 ) 2 + ( y - 1 ) 2 + ( z + 3 ) 2 = 9
3) Mặt cầu có tâm I(2;-1;3) và tiếp xúc với mp (Oxz) là ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 3 ) 2 = 1
4) Mặt cầu có tâm I(2;-1;3) và tiếp xúc với mp (Oyz) là ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 3 ) 2 = 4
Số mệnh đề đúng là bao nhiêu:
A. 4
B. 1
C. 2
D. 3
Cho mệnh đề:
1) Mặt cầu có tâm I(1;0;-1), đường kính bằng 8 là: ( x - 1 ) 2 + y 2 + ( z + 1 ) 2 = 16
2) Mặt cầu có đường kính AB với A=(-1;2;1),B=(0;2;3) là: ( x + 1 2 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 5 4
3) Mặt cầu có tâm O(0;0;0) và tiếp xúc với mặt cầu (S) có tâm (3;-2;4), bán kính bằng 1 là: x 2 + y 2 + z 2 = 30 ± 2 29
Số mệnh đề đúng là bao nhiêu:
A. 2
B. 1
C. 3
D. 0
Trong không gian Oxyz cho điểm M (2;1;1), mặt phẳng α : x + y + z - 4 = 0 và mặt cầu ( s ) : ( x - 3 ) 2 + ( y - 3 ) 2 + ( z - 4 ) 2 = 16 . Phương trình đường thẳng α đi qua M và nằm trong α cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất. Đường thẳng α đi qua điểm nào trong các điểm sau đây?
A. (4; -3; 3)
B. (4; -3; -3)
C. (4; 3; 3)
D. (-4; -3; -3)
Cho mệnh đề:
1) Mặt cầu có tâm I 1 ; 0 ; - 1 , đường kính bằng 8 là: x - 1 2 + y 2 + z + 1 2 = 16
2) Mặt cầu có đường kính AB với A - 1 ; 2 ; 1 , B 0 ; 2 ; 3 là: x + 1 2 2 + y - 2 2 + z - 2 2 = 5 4
3) Mặt cầu có tâm O 0 ; 0 ; 0 và tiếp xúc với mặt cầu (S) có tâm 3 ; - 2 ; 4 , bán
kính bằng 1 là:
Số mệnh đề đúng là bao nhiêu:
A. 1
B. 2
C. 3
D. 0
Cho đường thẳng d : x − 1 1 = y − 2 − 2 = z − 2 1 và điểm A (1; 2; 1). Tìm bán kính của mặt cầu có tâm I nằm trên d, đi qua A và tiếp xúc với mặt phẳng (P): x - 2 y + 2 z + 1 = 0
A. R = 2
B. R = 4
C. R = 1
D. R = 3
Cho mệnh đề:
1) Mặt cầu có tâm I 1 ; 0 ; - 1 , đường kính bằng 8 là: x - 1 2 + y 2 + z + 1 2 = 16
2) Mặt cầu có đường kính AB với A = - 1 ; 2 ; 1 , B = 0 ; 2 ; 3 là: x + 1 2 2 + y - 2 2 + z - 2 2 = 5 4
3) Mặt cầu có tâm O 0 ; 0 ; 0 và tiếp xúc với mặt cầu (S) có tâm 3 ; - 2 ; 4 , bán kính bằng 1 là: x 2 + y 2 + z 2 = 30 ± 2 29
Số mệnh đề đúng là bao nhiêu:
A. 1
B. 2
C. 3
D. 0
Viết phương trình mặt câu (S) có tâm I nằm trên tia Oy, bán kính R = 4 và tiếp xúc với mặt phẳng (Oxz).
A. x 2 + y 2 + z - 2 2 = 16
B. x 2 + y + 4 2 + z 2 = 16
C. x 2 + y - 4 2 + z 2 = 16
D. x 2 + y ± 4 2 + z 2 = 16
Viết phương trình mặt cầu (S) có tâm nằm trên (P): x+y+z+3=0 và cắt mặt phẳng (Q): x-2y+2z+1=0 theo một đường tròn giao tuyến (C) có tâm I ( 5 3 , - 7 3 , - 11 3 ) và bán kính bằng 2.
A. ( x + 3 ) 2 + ( y + 5 ) 2 + ( z + 1 ) 2 = 20
B. ( x - 3 ) 2 + ( y + 5 ) 2 + ( z + 1 ) 2 = 20
C. ( x + 3 ) 2 + ( y + 5 ) 2 + ( z + 1 ) 2 = 16
D. ( x - 3 ) 2 + ( y + 5 ) 2 + ( z + 1 ) 2 = 16
Trong không gian Oxyz, cho mặt cầu S : ( x − 4 ) 2 + ( y + 5 ) 2 + ( z − 3 ) 2 = 4 . Tìm tọa độ tâm I và bán kính R của mặt cầu.
A. I − 4 ; 5 ; − 3 v à R = 2
B. I 4 ; − 5 ; 3 v à R = 2
C. I − 4 ; 5 ; − 3 v à R = 4
D. I 4 ; − 5 ; 3 v à R = 4