a: F(x)=ax^3+bx^2+cx+d
b: F(x)=ax^3+2x^2+2x+d
c: f(x) có hệ số cao nhất là -6 và hệ số tự do bằng 3 nên f(x)=-6x^3+2x^2+2x+3
a: F(x)=ax^3+bx^2+cx+d
b: F(x)=ax^3+2x^2+2x+d
c: f(x) có hệ số cao nhất là -6 và hệ số tự do bằng 3 nên f(x)=-6x^3+2x^2+2x+3
1. Cho đa thức f(x) thỏa mãn (x^2-4x+3) f(x+1)= (x-2) f(x-1). Chứng tỏ rằng đa thức f(x) có ít nhất 3 nghiệm.
2. Đa thức f(x)= ax^2-x+b, a khác 0 có nghiệm x=2. Biết rằng tổng của hệ số cao nhất và hệ số tự do là -7. Tìm a và b
Bài 6. Cho hai đa thức: f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4
g(x) = x5 - 9 + 2x2 +7x4 + 2x3 - 3x.
a) Sắp xếp các đa thức theo luỹ thừa giảm của biến. Xác định bậc, hệ số cao nhất, hệ số tự do của mỗi đa thức.
b) Tính tổng h(x) = f(x) + g(x) c) Tìm nghiệm của đa thức h(x).
cho f(x) là 1 đa thức bậc 4 có hệ số cao nhất là 1 thỏa mãn điều kiện f(1)=3;f(3)=11;f(5)=27.tính f(-2)+7.f(6)
Cho đa thức f(x).Chứng tỏ rằng x=0 là nghiệm của f(x thì hệ số tự do của f(x) bằng 0.
Ngược lại,nếu hệ số tự do của f(x) =0 thì x=0 là 1 nghiệm của f(x)
Cho đa thức f(x).Chứng tỏ rằng x=0 là nghiệm của f(x thì hệ số tự do của f(x) bằng 0.
Ngược lại,nếu hệ số tự do của f(x) =0 thì x=0 là 1 nghiệm của f(x)
f(x)=3x −2x* −3x +x^ −x+x −1 và g(x)=x+x −x+2x3
a) Thu gọn và sắp xếp các hạng tử của 2 đa thức theo lũy thừa giảm dần của biến. b) Tìm bậc, hệ số cao nhất, hệ số tự do của f(x) và g(x).
c) Tính h(x)=g(x)−f(x) và h(−1).
f(x)=3x^3 −2x^4 −3x^2 +x^4 −x+x^2 −1 và g(x)=x^2+x^3 −x+2x^3
a) Thu gọn và sắp xếp các hạng tử của 2 đa thức theo lũy thừa giảm dần của biến. b) Tìm bậc, hệ số cao nhất, hệ số tự do của f(x) và g(x).
c) Tính h(x)=g(x)−f(x) và h(−1).
Tìm đa thức P(x) bậc 3 thõa mãn các điều kiện sau:
- P(x) khuyết hạng tử bậc 2
- Hệ số cao nhất là 4
- Hệ số tự do là 0
- x = \(\dfrac{1}{2}\) là 1 nghiệm của đa thức P(x)
1. Cho đa thức f (x) thỏa mãn ( x2 - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.
2. Đa thức f (x) = ax2 - x + b, a khác 0 và có nghiệm x = 2. Biết rằng tổng của hệ số cao nhất và hệ sô tự do là -7 . Tìm a và b.