Bài 1:Viết các tích sau dưới dạng lũy thừa:
a)48 . 220
b)912 . 272
c)36 . 32 . 3
d)45 . 162
Bài 1: tính tổng dãy số sau:
A = 1+3+32+33+...+399+3100
Các bạn xem bài giải của mình nếu đúng tick cho mình nhé!
Giải
Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+31013+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−13101−1
⇒⇒ A = 3101−123101−12
Vậy A = 3101−12
Tính A = 1 - 3 + 32 - 33 + 34 - ... + 398 - 399 + 3100
Tính A = 1 + 3 + 32 - 33 + 34 - ... + 398 - 399 + 3100
tính A = 1-3+32-33+34-...+398-399+3100
tính A = 1-3+32-33+34-...+398-399+3100
Toán lớp 6Cho S= 1/3-2/32+3/33-4/34+...+99/399-100/3100. So sánh S và 1/5
Viết thương sau dưới dạng lũy thừa:
a)275 : 813
b)59 : 813
A= 1/3 - 2/ 32 + 3/ 33 - 4/ 34 + .... + 99/ 399 - 100/ 3100 < 3/ 16
A= 1/3 - 2/ 32 + 3/ 33 - 4/ 34 + .... + 99/ 399 - 100/ 3100 < 3/ 16