Đáp án A
Do đó, hai mặt cầu đã cho ở ngoài nhau.
Đáp án A
Do đó, hai mặt cầu đã cho ở ngoài nhau.
Cho A 1 ; 1 ; 0 ; B - 1 ; 1 ; 0 ; C 1 ; - 1 ; 0 ; D - 1 ; - 1 ; 0 là tâm của 4 mặt cầu có bán kính bằng 1. Gọi I là tâm mặt cầu (S) có bán kính bằng 1 tiếp xúc ngoài với cả 4 mặt cầu kể trên. Tính bán kính R của mặt cầu ngoại tiếp hình chóp I.ABCD.
Trong không gian với hệ trục tọa độ Oxyz, cho các mặt cầu (S1), (S2), (S3) có bán kính r=1 và lần lượt có tâm là các điểm A(0;3;-1), B(-2;1;-1), C(4;-1;-1). Gọi (S) là mặt cầu tiếp xúc với cả ba mặt cầu trên. Mặt cầu (S) có bán kính nhỏ nhất là
Trong không gian với hệ trục tọa độ Oxyz, cho các mặt cầu ( S 1 ) , ( S 2 ) , ( S 3 ) có bán kính r=1 và lần lượt có tâm là các điểm A(0;3;-1), B(-2;1;-1), C(4;-1;-1). Gọi (S) là mặt cầu tiếp xúc với cả ba mặt cầu trên. Mặt cầu (S) có bán kính nhỏ nhất là bao nhiêu?
A. R= 10
B. R= 10 - 1
C. R= 2 2 - 1
D. 2 2
Trong hệ tọa độ Oxyz cho I(1;1;1) và mặt phẳng (P): 2x + y + 2z + 4 = 0. Mặt cầu (S) tâm I cắt (P) theo một đường tròn có bán kính r=4. Phương trình (S) là
A. ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 25
B. ( x + 1 ) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 25
C. ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 9
D. ( x + 1 ) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 9
Tìm bán kính R của mặt cầu (S) tâm I - 1 ; 2 ; 4 biết (S) cắt mặt phẳng (Oxy) theo giao tuyến là đường tròn (C) có bán kính r = 2 .
Mặt cầu (S) tâm I(2;-3;1) tiếp xúc với mặt phẳng Oxy có bán kính R bằng:
Cho mặt cầu (S) có tâm I(1;2;-1) và bán kính R=3. Phương trình mặt cầu (S’) đối xứng với mặt cầu (S) qua gốc tọa độ là:
A. ( x - 1 ) 2 + ( y - 2 ) 2 + ( z + 1 ) 2 = 9
B. ( x + 1 ) 2 + ( y + 2 ) 2 + ( z - 1 ) 2 = 9
C. x 2 + y 2 + z 2 - 2x - 4y + 2z - 3 = 0
D. x 2 + y 2 + z 2 = 9
Khi cắt mặt cầu S (O, R) bởi một mặt kính đi qua tâm O, ta được hai nửa mặt cầu giống nhau. Giao tuyến của mặt kính đó với mặt cầu gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S (O, R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R = 1, tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S (O, R) để khối trụ có thể tích lớn nhất.
Cho ( S ) : ( x - 1 ) 2 + ( y + 2 ) 2 + ( z + 1 ) 2 = 9 và A(-2;-2;3). Gọi ω là mặt cầu tâm A, ω tiếp xúc ngoài với (S). Tính bán kính R của ω