a) Vẽ một đường tròn tâm O rồi vẽ một tứ giác có tất cả các đỉnh nằm trên đường tròn đó.
b) Vẽ một đường tròn tâm I rồi vẽ một tứ giác có ba đỉnh nằm trên đường tròn đó còn đỉnh thức tư thì không.
Vẽ một đường tròn tâm O rồi vẽ một tứ giác có tất cả các đỉnh nằm trên đường tròn đó.
a) Vẽ đường tròn tâm O bán kính R = 2cm.
b) Vẽ một lục giác đều ABCDEF có tất cả các đỉnh nằm trên đường tròn (O).
c) Vì sao tâm O cách đều các cạnh của lục giác đều ? Gọi khoảng cách này là r.
d) Vẽ đường tròn (O; r).
Cho đường tròn tâm O,bán kính 1,5cm.Hãy vẽ hình vuông ABCD có bốn đỉnh nằm trên đường tròn đó. Nêu cách vẽ
Vẽ một lục giác đều ABCDEF có tất cả các đỉnh nằm trên đường tròn (O)
từ một điểm M nằm ngoài đường tròn tâm O , vẽ 2 tiếp tuyến MA , MB với đường tròn (A,B là 2 tiếp điểm ).Trên dây AB lấy điểm H (H khác A và B).Qua H vẽ đường thẳng vuông góc với OH cắt đường thẳng MA ở E, cắt đoạn thẳng MB tại F
1. chứng minh tứ giác có 4 đỉnh O,H,A,E là tứ giác nội tiếp.
2.chứng minh tam giác OEF cân.
3.kẻ OI vuông góc với AB ( I THUỘC AB).chứng minh OI.OF=OB.OH
Câu 5. (2,0 điểm) Cho Tam giác ABC có ba đỉnh năm trên đường tròn (O). Các đường cao BD, CE cắt nhau tại H (DEAC;EEAB), Vẽ đường kính AK của đường tròn (O).
a) Chứng minh rằng: Tứ giác BHCK là hình bình hành. b) Gọi M là trung điểm BC, G là trọng tâm của tam giác ABC. Chứng minh rằng ba điểm H, G, O thẳng hàng.
Cho góc nhọn xBy và đường phân giác Bz.Từ đỉnh A trên tia Bx lần lượt kẻ AH vuông góc By tại H và kẻ AD vuông góc Bz tại D.
a) Chứng minh: Tứ giác ABHD nội tiếp trong một đường tròn . Xác định tâm O và vẽ đường tròn này.
b) Chứng minh: OD//BH
Cho đường tròn tâm O bán kính R và điểm M nằm ngoài đường tròn. Từ M vẽ hai tiếp tuyến MA, MB với đường tròn (A,B là hai tiếp tuyến) a) Chứng minh tứ giác MAOB là nội tiếp trong một đường tròn b) Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D). Chứng minh hệ thức MA^2 = MC.MD c) Gọi H là trung điểm của dây CD. Chứng minh HM là tia phân giác của góc AHB giúp em với ạ em đang cần gấp