Lời giải:
PT hoành độ giao điểm: $\frac{-1}{2}x^2-2x-m=0$
$\Leftrightarrow x^2+4x+2m=0$
Để (P) cắt $(d)$ tại 2 điểm $A,B$ phân biệt thì PT hoành độ giao điểm trên có 2 nghiệm phân biệt.
Điều này xảy ra khi: $\Delta'=4-2m>0\Leftrightarrow m< 2$
Khi đó:
$x_1=-2-\sqrt{4-2m}; x_2=-2+\sqrt{4-2m}$
$y_1=2x_1+m=-4-2\sqrt{4-2m}+m; y_2=-4+2\sqrt{4-2m}+m$
Thế kết quả trên vô tọa độ điểm $A(x_1,y_1); B(x_2,y_2)$