a: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-\left(-3\right)}{2}=\dfrac{3}{2}\\y=-\dfrac{\left(-3\right)^2-4\cdot1\cdot4}{4\cdot1}=-\dfrac{9-16}{4}=\dfrac{7}{4}\end{matrix}\right.\)
Vì \(y=x^2-3x+4\) có a=1>0
nên hàm số sẽ đồng biến khi \(x>\dfrac{3}{2}\) và nghịch biến khi \(x< \dfrac{3}{2}\)
b: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=-\dfrac{2}{2\cdot\left(-1\right)}=\dfrac{-2}{-2}=1\\y=-\dfrac{2^2-4\cdot\left(-1\right)\cdot3}{4\cdot\left(-1\right)}=-\dfrac{4+12}{-4}=4\end{matrix}\right.\)
Vì \(y=-x^2+2x+3\) có a=-1<0
nên hàm số đồng biến khi x<1 và nghịch biến khi x>1