Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Bình

Từ S nằm ngoài (O), vẽ 2 tiếp tuyến SA,SA' và cát tuyến SBC với (O) (B nằm giữa SC)

a) phân giác góc BAC cắt BC tại D, cắt (O) tại E. so sánh SA với SD

b) OE cắt BS tại G, AA' cắt BC tại F, cắt SO tại H.c/m SH.SO=SG.SF

c) c/m SD2 = SG.SF

d) Biết SB=a, BC =2a/3. Tính SF

Nguyễn Việt Lâm
5 tháng 1 2024 lúc 14:04

a.

Do AE là phân giác \(\Rightarrow\widehat{BAE}=\widehat{CAE}\Rightarrow sđ\stackrel\frown{BE}=sđ\stackrel\frown{CE}\) 

\(\widehat{SAE}\) là góc tạo bởi tiếp tuyến tại A và dây AE \(\Rightarrow\widehat{SAE}=\dfrac{1}{2}sđ\stackrel\frown{AE}\) (1)

\(\widehat{SDA}\) là góc có đỉnh nằm trong đường tròn 

\(\Rightarrow\widehat{SDA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{CE}\right)\)  \(=\dfrac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{BE}\right)=\dfrac{1}{2}sđ\stackrel\frown{AE}\) (2)

(1);(2) \(\Rightarrow\widehat{SAE}=\widehat{SDA}\Rightarrow\Delta SAD\) cân tại S

\(\Rightarrow SA=SD\)

b.

Ta có \(SA=SA'\) (t/c hai tiếp tuyến cắt nhau); \(OA=OA'=R\)

\(\Rightarrow SO\) là trung trực của AA'

Hay SO vuông góc AA' tại H hay tam giác SHF vuông tại H

\(sđ\stackrel\frown{BE}=sđ\stackrel\frown{CE}\Rightarrow E\) là điểm chính giữa cung BC

OE là đường kính đi qua đi qua điểm chính giữa cung BC \(\Rightarrow OE\perp BC\)

Hay tam giác SGO vuông tại G

Xét hai tam giác SGO và SHF có: 

\(\left\{{}\begin{matrix}\widehat{SGO}=\widehat{SHF}=90^0\\\widehat{GSO}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta SGO\sim\Delta SHF\left(g.g\right)\)

\(\Rightarrow\dfrac{SO}{SF}=\dfrac{SG}{SH}\Rightarrow SH.SO=SG.SF\)

Nguyễn Việt Lâm
5 tháng 1 2024 lúc 14:07

c.

SA là tiếp tuyến tại A \(\Rightarrow\Delta SAO\) vuông tại A

Áp dụng hệ thức lượng trong tam giác vuông SAO với đường cao AH:

\(SA^2=SH.SO\)

Mà theo chứng minh trên \(\left\{{}\begin{matrix}SD=SA\\SH.SO=SG.SF\end{matrix}\right.\)

\(\Rightarrow SD^2=SG.SF\)

d.

Do OE vuông góc BC tại G (theo cm câu b) \(\Rightarrow G\) là trung điểm BC

\(\Rightarrow BG=\dfrac{1}{2}BC=\dfrac{a}{3}\Rightarrow SG=SB+BG=\dfrac{4a}{3}\)

Xét hai tam giác SAB và SCA có:

\(\left\{{}\begin{matrix}\widehat{SAB}=\widehat{SCA}\left(\text{cùng chắn AB}\right)\\\widehat{CSA}\text{ chung}\end{matrix}\right.\)  \(\Rightarrow\Delta SAB\sim\Delta SCA\left(g.g\right)\)

\(\Rightarrow\dfrac{SA}{SC}=\dfrac{SB}{SA}\Rightarrow SA^2=SB.SC=SB^2.\left(SB+BC\right)=\dfrac{5a^2}{3}\)

Theo đẳng thức câu c: \(SA^2=SD^2=SG.SF\)

\(\Rightarrow SF=\dfrac{SA^2}{SG}=\dfrac{5a}{4}\)

Nguyễn Việt Lâm
5 tháng 1 2024 lúc 14:05

loading...


Các câu hỏi tương tự
Minh Bình
Xem chi tiết
Ngọc Ánh Bùi
Xem chi tiết
Bui Cong THanh
Xem chi tiết
Dorris Linh
Xem chi tiết
Phương
Xem chi tiết
Thúy Trịnh Thị
Xem chi tiết
nguyễn thị lộc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết