Từ một điểm A nằm ngoài đường tròn (O; R), kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng qua B và vuông góc với OA tại H cắt (O) tại C. Vẽ đường kính BD của (O).
a) Chứng minh \(\Delta BCD\) vuông
b) Chứng minh AC là tiếp tuyến của (O)
c) Chứng minh DC . AO = R2
d) Biết OA = 2R. Tính diện tích \(\Delta BCD\) theo R.
từ A năm ngoái (O,R) kẻ tiếp tuyến AB với (O) .đường thẳng qua B và vuông góc với AO tại H cát (O) tại C về đường kính BD của (O).BIẾT oa =2R .tính diện tích tam giác BCK theo R
từ 1 điểm A nằm ngoài đường tròn (O:R), kẻ tiếp tuyến AB với (O)(B là tiếp điểm). Đường thẳng qua B và vuông góc với OA tại H cắt (O) tại C. Vẽ đường kính BD của (O)
a) Chứng minh \(\Delta\)BCD vuông
b) chứng minh AC là tiếp tuyến của (O)
c) chứng minh DC.AO=\(2R^2\)
d) biết OA=2R. Tính diện tích \(\Delta BCD\)theo R
Từ một điểm A nằm ngoài đường tròn (O;R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.
Từ một điểm A nằm ngoài đường tròn (O,R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a)CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.
Cho (O; R) và một điểm A nằm ngoài (O) sao cho OA = 2R. Từ A vẽ tiếp tuyến AB của (O) (B là tiếp điểm)
a) Chứng minh tam giác ABO vuông tại B và tính độ dài AB theo R.
b) Từ B kẻ dây cung BC của (O) vuông góc với cạnh OA tại H. chứng minh AC là tiếp tuyến của (O)
c) Chứng minh tam giác ABC đều
d) Từ H kẻ đường thẳng vuông góc với AB tại D. Đường tròn đường kính AC cắt cạnh DC tại E. Gọi F là trung điểm của OB. Chứng minh ba điểm A, E, F thẳng hàng.
Từ điểm A ở ngoài đường tròn (O ; R), kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B và vuông góc với OA tại H cắt (O) tại C. Vẽ đường kính BD của (O).
a) Chứng minh: AC là tiếp tuyến của (O).
b) Chứng minh: DC.OA = 2R2 .
c) Kẻ BK ^ AC (K Î AC), cho OA = 2R. Tính diện tích DBKC theo R.
Cho đường tròn (O;R). Từ điểm A ngoài đường tròn kẻ các tiếp tuyến AB,AC với đường tròn (B,C là tiếp điểm). Gọi H là giao điểm của AO và BC
a) Cm: AO vuông góc với BC tại H
b) Vẽ đường kính BD của (O), cm: DC song song AO
c) AD cắt (O) tại E (E khác D). CM AE.AD=AH.AO
d) Qua vẽ đường thẳng vuông góc với AB. Đường thẳng này cắt OC tại F. CM: OA^2 = 2OC.OF
Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O) sao cho OA = 2R. Từ A vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm).
1) Chứng minh tam giác ABO vuông tại B và tính độ dài AB theo R (1đ)
2) Từ B vẽ dây cung BC của (O) vuông góc với cạnh OA tại H. Chứng minh AC là tiếp tuyến của đường tròn (O). (1đ)
3) Chứng minh tam giác ABC đều. (1đ)
4) Từ H vẽ đường thẳng vuông góc với AB tại D. Đường tròn đường kính AC cắt cạnh DC tại E. Gọi F là trung điểm của cạnh OB. Chứng minh ba điểm A, E, F thẳng hàng. (0.5đ)