Từ một điểm A nằm ngoài ( O;R) vẽ hai tiếp tuyến AB và AC
a) chứng minh ABOC nội tiếp
b) vẽ cát tuyến ADE, chứng minh: AD.AE=AB.AB
c) Gọi I là trung điểm DE, chứng minh : A;O;I;C nằm trên 1 đường tròn
d) chứng minh IA là phân giác của góc BIC
Từ điểm A nằm ngoài đường tròn (O). Vẽ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là hai tiếp điểm).
a) Chứng minh tứ giác ABOC nội tiếp được đường tròn.
b) Vẽ cát tuyến ADE của (O) sao cho cát tuyến ADE nằm giữa 2 tia AO, AB; D, E thuộc đường tròn (O) và D nằm giữa A, E. Chứng minh AB 2 =AD.AE .
c) Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H thẳng hàng.
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE với đường tròn( D nằm giữa A và E). Phân giác góc DBE cắt DE tại I. CMR
a. AI=AB=AC
b. CI là phân giác góc DCE
A là một điểm nằm ngoài đường tròn tâm I. Vẽ các tiếp tuyến AE, AF. G là giao điểm của IA và EF. Vẽ cát tuyến AMN với M nằm giữa A và N. Chứng minh GF là tia phân giác góc MGN.A là một điểm nằm ngoài đường tròn tâm I. Vẽ các tiếp tuyến AE, AF. G là giao điểm của IA và EF. Vẽ cát tuyến AMN với M nằm giữa A và N. Chứng minh GF là tia phân giác góc MGN.
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn(O) vẽ hai tiếp tuyến AB, AC của (O) ( B và C là tiếp điểm), vẽ cát tuyến ADE của đường tròn (O) (D, E thuộc O) D nằm giữa A và E. Tia AD nằm giữa hai tia AB và AO
a. Chứng minh tứ giác ABOC nội tiếp đường tròn, xác định tâm của đường tròn ngoại tiếp
b.Gọi H là giao điểm của OA và BC chứng minh AB2 = AD.AE và AB2 = AH.AO
c. Đường thẳng AO cắt đường tròn (O) tại M và N (M nằm giữa A và O) Chứng minh EH.AD = MH.AN
Từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC (B và C là 2 tiếp điểm). Vẽ cát tuyến ADE đến (O) (tia AD nằm giữa 2 tia AB và AO). Gọi I là trung điểm của DE.
a) Chứng minh tứ giác OBAC nội tiếp được và OI vuông góc với DE. b) Chứng minh AB = AD, AE.
c) Kẻ dường thẳng qua D vuông góc với OC tại H và cắt BC tại K. Chứng minh tứ giác BDKI nội tiếp được.
:Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn (O). Vẽ hai tiếp tuyến AB, AC của (O) (B, C là tiếp điểm). Vẽ cát tuyến ADE của (O) (D, E thuộc (O); D nằmgiữa Avà E; tia AD nằm giữa hai tia AB và AO). a) Chứng minh tứ giác ABOC nội tiếp được đường tròn và AB2 = AD. AE. b) Gọi H là giao điểm của OA và BC. Chứng minh tứ giác DEOH nội tiếp. c) Đường thẳng AO cắt đường tròn (O) tại M và N (M nằm giữa A và O). Chứng minh EH.AD = MH.AN.
Từ một điểm A nằm ngoài đường tròn(o,r)kẻ hai tiếp tuyến AB, AC và cát tuyến ADE, H là giao điểm của AO và DI .
A, chứng minh tứ giác ABOC nội tiếp
B, kẻ đường kính BI của đường tròn (o), gọi K là giao điểm của AO và DI. Chúng minh: BK song song EI
Cho đường tròn tâm O bán kính R và điểm M nằm ngoài đường tròn. Từ M vẽ hai tiếp tuyến MA, MB với đường tròn (A,B là hai tiếp tuyến) a) Chứng minh tứ giác MAOB là nội tiếp trong một đường tròn b) Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D). Chứng minh hệ thức MA^2 = MC.MD c) Gọi H là trung điểm của dây CD. Chứng minh HM là tia phân giác của góc AHB giúp em với ạ em đang cần gấp