tứ giác ABCD là hình bình hành
⇒ tứ giác ABCD là hình thoi.
(Hình bình hành có hai cạnh kề bằng nhau là hình thoi)
tứ giác ABCD là hình bình hành
⇒ tứ giác ABCD là hình thoi.
(Hình bình hành có hai cạnh kề bằng nhau là hình thoi)
Câu 1: Trong mặt phẳng 0xy cho A(2;4) B=(-1;4) C=(-5;1). Tọa độ điểm D để tứ giác ABCD là hình bình hành là:
A. . ( -8;1 ) B. . ( 6;7) C. . (-2; 1) D. .( 8;1)
Trong mặt phẳng Oxy, cho A( -2; 0) ; B( 5; -4) ; C( -5; 1). Tọa độ điểm D để tứ giác ABCD là hình bình hành là:
A. D( -8; 5).
B. D( 5; 8).
C. D( 8; 5).
D. D( 8; -5).
Trong mặt phẳng oxy cho 3 điểm A(-5;2) B(4:-3) C(6:1) tìm tọa độ D để tứ giác abcd là hình bình hành
Trong mặt phẳng tọa độ Oxy , cho tam giác ABC có A (3;2) , B(-4;2) ,C (3;5) tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành
Trên mặt phẳng tọa độ Oxy cho bốn điểm: A(7; -3), B(8; 4), C(1; 5), D(0; –2). Chứng minh rằng tứ giác ABCD là hình vuông.
Cho △ABC biết A (-1;1), B (2;1), C (-1;-3)
a) Tính chu vi tam giác
b) Tìm tọa độ trọng tâm G của tam giác ABC
c) Xác định điểm D sao cho tứ giác ABCD là hình bình hành
Trong mặt phẳng tọa độ Oxy cho A(3; -1) ; B( -1; 2) và I( 1; -1) . Xác định tọa độ các điểm C; D sao cho tứ giác ABCD là hình bình hành biết I là trọng tâm tam giác ABC. Tìm tọa tâm O của hình bình hành ABCD
A.
B.
C.
D.
Trong mặt phẳng tọa độ Oxy, cho 3 điểm có A(-3;-2); B(3;6); C(11;0). Tìm tọa độ điểm D để tứ giác ABCD là hình vuông
Gọi S là diện tích của tứ giác ABCD có độ dài các cạnh là a,b,c,d. CMR: \(S\le\frac{a^2+b^2+c^2+d^2}{2}\)
Trong mặt phẳng Oxy, cho tam giác ABC với A(1;1), B(3;5) và C(5;-1)
a) tìm tọa độ trọng tâm G và tính chu vi của Tam giác ABC
b) tìm tọa độ điểm D để tứ giác ABCD là hình thang với đáy lớn BC và
BC = 2AD