Từ điểm M nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến MA và MB với đường tròn (A,B là tiếp điểm). Lấy điểm C thuộc cung nhỏ AB sao cho cung CA nhỏ hơn cung CB, MC cắt đường tròn tại điểm thứ hai là D. Gọi H là trung điểm CD. 1. CM: tứ giác MAHO nội tiếp 2. Gọi K là giao điểm của AB và CD, chứng minh MH.MK=MC.MD 3. Đường thẳng qua C song song với MB cắt AB tại E, DE cắt MB tại F, chứng minh F là trung điểm của BM Xin hãy giúp mình ý 3 với, mình cảm ơn nhiều ❤
3: góc MHO=góc MAO=góc MBO=90 độ
=>M,A,O,H,B cùng nằm trên đường tròn đường kính OM
=>góc HAB=góc HMB
CE//MB
=>góc HCE=góc HMB=góc HAB
=>ACEH nội tiếp
=>góc CHE=góc CAE
mà góc CAE=góc CDB
nên gó CHE=góc CDB
=>HE//DB
Gọi K là giao của CE và DB
Xét ΔCKD có
H là trung điểm của CD
HE//KD
=>E là trung điểm của CK
=>EC=EK
Vì CK//MB
nên CE/MF=DE/DF=EK/FB
mà CE=EK
nên MF=FB
=>F là trung điểm của MB