Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
....

Từ điểm A nằm bên ngoài đường tròn tâm O, kẻ tiếp tuyến AB với (O)( B là tiếp điểm). Lấy điểm
C thuộc đường tròn (O) sao cho AC=AB, Vẽ đường kính BE.
a) Chứng minh AC vuông góc với OC. Từ đó suy ra AC là tiếp tuyến của (O).
b) Chứng minh OA//CE.
c) Gọi H là hình chiếu vuông góc của C trên BE và M là giao điểm của AE và CH. Chứng minh M là
trung điểm của CH.

Nguyễn Lê Phước Thịnh
3 tháng 9 2021 lúc 22:04

a: Xét ΔOBA và ΔOCA có 

OB=OC

OA chung

BA=CA

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}\)

\(\Leftrightarrow\widehat{OCA}=90^0\)

hay AC\(\perp\)OC tại C

Xét (O) có

OC là bán kính

AC\(\perp\)OC tại C

Do đó: AC là tiếp tuyến của (O)

b: Ta có: OB=OC

nên O nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2)suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC(3)

Xét (O) có

ΔBCE nội tiếp đường tròn

BE là đường kính

Do đó: ΔBCE vuông tại C

hay BC\(\perp\)CE(4)

Từ (3) và (4) suy ra CE//OA


Các câu hỏi tương tự
....
Xem chi tiết
Ngọc Anh
Xem chi tiết
TRUONG LINH ANH
Xem chi tiết
Nguyễn Phương Ly
Xem chi tiết
Nguyễn Thu Phương
Xem chi tiết
︵✿๖ۣۜTổng tài Lin_Chan...
Xem chi tiết
Tiên Học Lễ
Xem chi tiết
Nyx Artemis
Xem chi tiết
Pham Trong Bach
Xem chi tiết