Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Từ các số của tập A={0; 1; 2; 3; 4; 5; 6} có thể lập được bao nhiêu số chẵn gồm 5 chữ số đôi một khác nhau trong đó có hai chữ số lẻ và hai chữ số lẻ đứng cạnh nhau.

A.360

B.362

C.345

D. 368

Cao Minh Tâm
28 tháng 10 2019 lúc 8:32

Vì có 3 số lẻ là 1,3,5, nên ta tạo được 6 cặp số kép: 13;31;15;51;35;53

Gọi A là tập các số gồm 4 chữ số được lập từ X={0;13;2;4;6}.

Gọi A­1,A2,A3 tương ứng là số các số tự nhiên lẻ gồm 4 chữ số khác nhau được lập từ các chữ số của tập X  và 13 đứng ở vị trí thứ nhất, thứ hai và thứ ba.

Ta có:  

Nên 

Vậy số các số cần lập là: 6.60=360  số.

Chọn A.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
le thi thuy
Xem chi tiết