Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số chẵn, mỗi số có 5 chữ số khác nhau trong đó có đúng hai chữ số lẻ và 2 chữ số lẻ đứng cạnh nhau?

A. 468

B. 280

C. 310

D. 290

Cao Minh Tâm
8 tháng 1 2018 lúc 8:16

Đáp án A

Goi A là số tự nhiên có hai chữ số lẻ khác nhau lấy từ các số 1, 2, 3, 4, 5, 6 số cách chọn được A là  A 3 2 = 6 . Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa A và ba trong 4 chữ số 0; 2; 4; 6. Gọi  a b c d ; a, b, c, d  ∈ {A, 0, 2, 4, 6} là số thỏa mãn yêu cầu bài toán.

*TH1: Nếu d = 0 số cách lập là:  1 A 4 3 = 24 .

*TH2: Nếu  d ≠ 0  thì d có 3 cách chọn, a có 3 cách chọn, b có 3 cách chọn, c có 2 cách chọn nên số cách lập là: 3.3.3.2 = 54

Số cách lập: 6(24+54) = 468 cách.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
le thi thuy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết