Cho O R; và điểm A nằm ngoài đường tròn với OA R 2 . Từ A vẽ hai tiếp tuyến AB AC , của đường tròn O (B C, là tiếp điểm). Vẽ dây BE của đường tròn O song song với AC ; AE cắt O tại D khác E ; BD cắt AC tại S . Gọi M là trung điểm của đoạn DE . a) Chứng minh năm điểm A B C O M , , , , cùng thuộc một đường tròn. Xác định tâm và bán kính của đường tròn này. b) Chứng minh 2 SC SB SD . . c) Hai đường thẳng DE và BC cắt nhau tại Q ; đường thẳng SQ cắt BE tại H . Chứng minh ba điểm H O C , , thẳng hàng.
cho điểm A nằm ngoài đường tròn (O). Vẽ AB,AC là các tiếp tuyến và cát tuyến ADE ( tia AD nằm giữa hai tia AB và AO). OA cắt AB tại H.Vẽ Bk vuông góc với DE tại K, KH cắt AB tại G và cắt đường thẳng đi qua A song ong với CD tại M. Vẽ AS vuông với GD tại S. CM DKMS nội tiếp
mọi người giúp mình bài này với:
cho (O) đường kính AB .Lấy C thuộc (O) sao cho AC<BC .Qua A vẽ tiếp tuyến d với (O) .BC cắt d ở F ,qua C vẽ tiếp tuyến d' với (O) ,d cắt d' tại D .Hạ CH vuông góc với AB,BD cắt CH tại K .Tia AK cắt DC tại E .Chứng minh EB là tiếp tuyến của (O) và OE song song với CA
cho (o) từ 1 điểm A nằm ngoài đường tròn (o) vẽ 2 tiếp tuyến AB và AC với đường tròn. Kẻ dây CD song song AB. Nối AD cắt đường tròn (o) tại E. 1. Chứng minh tam giác BOC nội tiếp, 2 Chứng tỏ AB2= AE*AD. 3 Chứng minh góc AOC = GÓC ACB và tam giác BDC cân. 4. CE kéo dài cắt AB ở I. Chứng minh IA=IB
Cho (O;R) và điểm A nằm ngoài đường tròn với OA > 2R. Từ A và B vẽ 2 tiếp tuyến AB, AC của đường tròn O (B,C là các tiếp điểm). VẼ dây BE của đường tròn O song song với AC; AE cắt (O) tại D khác E; BD cắt AC tại S. Gọi M là trung điểm của DE. Hai đường thẳng DE và BC cắt nhau tại V; đường thẳng SV cắt BE tại H. Chứng minh 3 điểm H,O,C thẳng hàng.
Từ một điểm A ở bên ngoài đường tròn tâm O, kẻ hai tiếp tuyến AB và AC với đường tròn tâm O (B và C là hai tiếp điểm). Vẽ BD song song với AC ( D thuộc đường tròn tâm O), AD cắt đường tròn O tại K. Tia BK cắt AC tại I. CMR: I là trung điểm của AC
Từ 1 điểm A nằm ngoài đường tròn (O) vẽ các tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Kẻ dây CD// AB , tia AD cắt (O) tại E (E# D)
1) cm tứ giác ABOC nội tiếp
2) cm góc ACB = góc AOC
3) cm AB^2 = AE. AD
4) Tia CE cắt AB tại I. cmr IA= IB
CÔ HOÀNG THỊ THU HUYỀN GIÚP EM VỚI
1. Cho (O) và (O') cắt nhau tại 2 điểm A và B. Trên tia đối tia AB lấy điểm M khác điểm A. Qua M vẽ các tiếp tuyến MC, MD với (O') (C, D là tiếp điểm và C nằm ngoài (O). Đường thẳng AC cắt (O) tại P (khác A), AD cắt (O) tại Q (khác A). CD cắt PQ tại K
a) Chứng minh ΔBCDđồng dạng với ΔBPQ
b) Chứng minh đường tròn ngoại tiếp tam giác KPC luôn đi qua một điểm cố định khi M thay đổi
c) Chứng minh OK vuông góc với PQ
2. cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ các tiếp tuyến AB, AC(B, C là tiếp điểm). Qua B kẻ đường thẳng song song với AC cắt (O) tại E. AE cắt (O) tại D, BD cắt AC tại M. CHứng minh M là trung điểm của AC
Cho đường tròn (O,R) và điểm A ở ngoài đường tròn với OA>2R. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B,C là tiếp điểm). Vẽ dây BE của đường tròn (O) song song với AC;AE cắt (O) tại D khác E; BD cắt AC tại S. Gọi M là trung điểm của đoạn DE.
a) Chứng minh: A,B,C,O,M cùng thuộc một đường tròn và SC^2=SB.SD
b) Tia BM cắt (O) tại K khác B. Chứng minh: CK song song với DE.
c) Chứng minh tứ giác MKCD là một hình bình hành.
d) Hai đường thẳng DE và BC cắt nhau tại V; đường thẳng SV cắt BE tại H.
Chứng minh: Ba điểm H, O, C thẳng hàng.