Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (α): 2x+y-2z-2 = 0 và đường thẳng có phương trình d : x + a 1 = y + 2 2 = z + 3 2 và điểm A(1/2;1;1) Gọi ∆ là đường thẳng nằm trong mặt phẳng (α) , song song với d, đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng:
A. 7/3
B. 7/2
C. 21 2
D. 3/2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : 2 x + y − 2 z − 2 = 0 và đường thẳng có phương trình d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A 1 2 ; 1 ; 1 . Gọi ∆ là đường thẳng nằm trong mặt phẳng α , song song với d, đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng:
A. 7 3 .
B. 7 2 .
C. 21 2 .
D. 3 2 .
Trong mặt phẳng tọa độ Oxy, cho đường tròn C 1 : x 2 + y 2 = 4 , C 2 : x 2 + y 2 - 12 x + 18 = 0 và đường thẳng d : x - y + 4 = 0 . Phương trình đường tròn có tâm thuộc C 2 , tiếp xúc với d và cắt C 1 tại hai điểm phân biệt A và B sao cho AB vuông góc với d là:
A. x - 3 2 + y - 3 2 = 4
B. x - 3 2 + y - 3 2 = 8
C. x + 3 2 + y + 3 2 = 8
D. x + 3 2 + y + 3 2 = 4
Trên hệ trục tọa độ Oxy, cho đường tròn C : x 2 + y 2 - 2 x + 6 y - 4 = 0 . Viết phương trình đường thẳng d đi qua điểm A(2;-1) và cắt đường tròn (C) theo một dây cung có độ dài lớn nhất?
A. 4x + y - 1 = 0
B. 2x - y - 5 = 0
C. 3x - 4y - 10 = 0
D. 4x + 3y - 5 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-1;-2;2), B(-3;-2;0) và mặt phẳng (P):x+3y-z+2=0. Vectơ chỉ phương của đường thẳng d là giao tuyến của mặt phẳng (P) và mặt phẳng trung trực của đoạn AB có tọa độ là
A. u → = 1 ; - 1 ; 0
B. u → = 2 ; 3 ; - 1
C. u → = 1 ; - 2 ; 0
D. u → = 3 ; - 2 ; - 3
Trong không gian với hệ tọa độ Oxyz cho tam giác ABC vuông tại C có A B C ^ = 60 ° ; A B = 3 2 . Đường thẳng AB có phương trình x - 3 1 = y - 4 1 = x + 8 - 4 , đường thẳng AC nằm trên mặt phẳng α : x + z - 1 = 0 . Biết điểm B là điểm có hoành độ dương, gọi (a,b,c) là tọa độ của điểm C. Giá trị a + b + c bằng
A. 2
B. 3
C. 4
D. 7
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 , đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A(1/2; 1; 1). Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng Oxy tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 / 3
B. 7 / 2
C. 21 / 2
D. 3 / 2
Cho mặt phẳng Oxy cho tam giác ABC có A(-1; 2), B(-2; -4), C(1; 2)
1) Viết phương trình tổng quát đường thẳng AC, phương trình tham số đường trung tuyến CM.
2) Tìm tọa độ trọng tâm G, trực tâm H, tâm đường tròn ngoại tiếp I của tam giác ABC.
3) Tính chu vi, diện tích tam giác ABC.
4) Tính số đo góc tạo bởi 2 đường thẳng AB và AC.
5) Viết phương trình đường tròn ngoại tiếp tam giác ABC. Lập phương trình tiếp tuyến của đường tròn tại điểm A.
6) Lập phương trình đường tròn tâm C và tiếp xúc với đường thẳng AB.
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;3) và đường thẳng (d): x - 2 2 = y + 2 - 1 = z - 3 1 . Gọi điểm B thuộc trục Ox sao cho AB vuông góc với đường thẳng (d). Khoảng cách từ B đến mặt phẳng ( α ): 2x+2y-z-1=0 là:
A. 2
B. 2 3
C. 1 3
D. 1