Tọa độ A, B là nghiệm \(\left\{{}\begin{matrix}\left(x-1\right)^2+y^2=4\\\left(x-4\right)^2+\left(y-3\right)^2=16\end{matrix}\right.\)
Trừ vế cho vế:
\(\Rightarrow x+y-2=0\)
Đây chính là pt đường thẳng AB
Tọa độ A, B là nghiệm \(\left\{{}\begin{matrix}\left(x-1\right)^2+y^2=4\\\left(x-4\right)^2+\left(y-3\right)^2=16\end{matrix}\right.\)
Trừ vế cho vế:
\(\Rightarrow x+y-2=0\)
Đây chính là pt đường thẳng AB
trong mặt phẳng Oxy, cho điểm I (1; -1) và đường thẳng d: x+y+2=0. Viết phương trình đường tròn tâm I cắt d tại hai điểm A,B sao cho AB=2
trong mặt phẳng Oxy, cho điểm I (1; -1) và đường thẳng d: x+y+2=0. Viết phương trình đường tròn tâm I cắt d tại hai điểm A,B sao cho AB=2
Trong mặt phẳng với hệ tọa độ Oxy , cho điểm M (2;1) và đường thẳng d: x-y+1=0. Viết phương trình đường tròn đi qua M cắt d ở 2 điểm A, B phân biệt sao cho tam giác MAB vuông tại M và có diện tích bằng 2.
trong mặt phẳng Oxy, cho điểm I (2;-1) và đường thẳng Δ:3x+4y+3=0.Viết phương trình đường tròn tâm I cắt Δ tại hai điểm phân biệt A,B sao cho diện tích tam giác IAB = 4
trong mặt phẳng oxy viết phương trình đường tròn (c) có tâm nằm trên trục hoành và đường tròn (c) tiếp xúc với cả hai đường thẳng (d1):2x-y-1=0 (d2):x-2y+1=0 Trong mặt phẳng Oxy,viết phương trình đường tròn
Trong mặt phẳng Oxy, cho hai điểm A(1;2) và B(-3;6)
Tìm giá trị của tham số m để đường thẳng Δ: x+y+2m+1=0 cắt đường tròn (C):(x-1)2+(y+2)2=2 tại hai điểm phân biệt A,B sao cho độ dài AB=2
Bài 1: Trong mặt phẳng với hệ toạ độ Đềcác vuông góc Oxy, cho đường thẳng (∆): 2x+y+3=0 và hai điểm A(-5;1), B(-2;4) 1. Viết phương trình đường tròn C đi qua A,B và có tâm I∈ (∆). 2. Viết phương trình đường tiếp tuyến tại A với đường tròn C. 3. Viết phương trình các tiếp tuyến với (C), biết tiếp tuyến đi qua D(1;2). Tìm toạ độ tiếp điểm. Bài 2: Trong mặt phẳng với hệ toạ độ Oxy cho điểm I(-2;1) và đường thẳng d: 3x-4y=0 a. Viết phương trình đường tròn (C) có tâm I và tiếp xúc với đường thẳng d. b. Viết phương trình tập hợp các điểm mà qua các điểm đó vẽ được hai tiếp tuyến đến (C) sao cho hai tiếp tuyến vuông góc với nhau.
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: x-y-6 = 0 và hai điểm A (6;4), B (4;0). Viết phương trình đường tròn (C) có tâm thuộc d và đi qua hai điểm A,B
Bài tập 6. Trong mặt phẳng Oxy, cho hai đường thẳng Delta_{1} / 2 * x - y - 2 = 0 , Delta_{2} / x - y + 3 = 0 và hai điểm A(-1;3) , B(0;2) . a. Viết phương trình đường thẳng qua AB. b. Viết phương trình đường thẳng trung trực của đoạn thẳng AB . c. Viết phương trình đường thẳng qua 4 và song song với Delta_{1} . d. Viết phương trình đường thẳng qua 4 và vuông góc với Delta_{1} e. Viết phương trình đường thẳng qua B và có hệ số góc k = - 3 . f. Tính côsin góc giữa hai đường thẳng Delta_{1}, Delta_{2} g. Tính d(A, Delta_{2}) . h. Viết phương trình đường thẳng qua 4 và tạo với Delta_{1} một góc c biết cos varphi = 1/(sqrt(5)) i. Tìm tọa độ hình chiếu vuông góc của 4 trên Delta_{2} j. Tìm tọa độ điểm B^ prime d hat oi xứng với B qua Delta_{2}
Câu 3: Trong mặt phẳng Oxy, cho hai điểm A(1;-2), B(3;1). Viết phương trình tham số của đường thẳng d đi qua hai điểm A và B.
Câu 4: Cho hai điểm A(4; -3), B(2;1). Viết phương trình đường tròn (C) nhận AB làm đường kính