Trong không gian với hệ tọa độ Oxyz, cho hình vuông ABCD có diện tích bằng 36, đường thẳng chứa cạnh AB song song với trục Ox, các đỉnh A, B và C lần lượt nằm trên đồ thị các hàm số y = log a x , y = log a x , y = log a 3 x , với (x>0;a>1). Giá trị của a là
A. a = 6 3
B. a = 6 6
C. a = 3
D. a = 3 6
Trong không gian với hệ tọa độ Oxyz, cho hình vuông ABCD có diện tích bằng 36, đường thẳng chứa cạnh AB song song với trục Ox, các đỉnh A, B và C lần lượt nằm trên đồ thị các hàm số y = log a x , y = log a x , y = log a 3 x , với x > 0 , a > 1 . Giá trị của a là:
A. a = 6 3
B. a = 6 6
C. a = 3
D. a = 3 6
Hình vuông ABCD có diện tích là 36 và đoạn AB song song với trục Ox. Các đỉnh A, B, C lần lượt nằm trên các đồ thị y = log a x , y = 2 log a x , y = 3 log a x 0 < a , a ≠ 1 . Biết rằng a = 3 n , n ∈ ℕ , n ≥ 2 . Giá trị của n bằng
A. 4
B. 3
C. 5
D. 6
Cho hình vuông ABCD có diện tích bằng 36, A B → là một vectơ chỉ phương của đường thẳng y = 0, các điểm A, B, C lần lượt nằm trên đồ thị hàm số y = log a x , y = 2 log a x , y = 3 log a x . Tìm a
A. a = 3 6
B. a = 3
C. a = 6 3
D. a = 6
Cho hàm số y = − x 3 + 3 x 2 + 9 x có đồ thị (C). Gọi A, B, C, D là bốn điểm trên đồ thị (C) với hoành độ lần lượt là a, b, c, d sao cho tứ giác ABCD là một hình thoi đồng thời hai tiếp tuyến tại A, C song song với nhau và đường thẳng AC tạo với hai trục tọa độ một tam giác cân. Tính tích abcd.
A. 144
B. 60
C. 180
D. 120
Trong mặt phẳng tọa độ, cho hình chữ nhật (H) có một cạnh nằm trên trục hoành, và có hai đỉnh trên một đường chéo là A(-1;0) và C(a; a ), với a> 0. Biết rằng đồ thị hàm số y= x chia hình (H) thành hai phần có diện tích bằng nhau. Tìm a
A. a= 9
B. a= 4
C. a= 1/2
D. a= 3
Trong mặt phẳng tọa độ, cho hình chữ nhật H có một cạnh nằm trên trục hoành và có hai đỉnh trên một đường chéo là A - 1 ; 0 và C a ; a với a > 0. Biết rằng đồ thị hàm số y = x chia hình H thành hai phần có diện tích bằng nhau, tìm a
A. a = 1 2
B. a = 3
C. a = 4
D. a = 9
Trong không gian với hệ tọa độ Oxyz, cho điểm M(-3;2;4) và đường thẳng d : x + 3 2 = y − 1 − 2 = z + 3 . Gọi A, B, C lần lượt là hình chiếu vuông góc của M trên trục Ox, Oy, Oz và M'(a;b;c) là hình chiếu song song của điểm M theo phương d lên mặt phẳng (ABC). Giá trị của biểu thức T = a + 2 b + 1 2 c là:
A. T = − 3.
B. T = 17 2 .
C. T = 15 17 .
D. T = 3 2 .
Trong không gian với hệ tọa độ Oxyz, cho điểm M(-3;2;4) và đường thẳng d : x + 3 2 = y − 1 − 2 = z + 3 . Gọi A, B, C lần lượt là hình chiếu vuông góc của M trên trục Ox, Oy, Oz và M'(a;b;c) là hình chiếu song song của điểm M theo phương d lên mặt phẳng (ABC). Giá trị của biểu thức T = a + 2 b + 1 2 c là:
A. T = − 3.
B. T = 17 2 .
C. T = 15 17 .
D. T = 3 2 .