Do \(M\in BC\Rightarrow d\left(A;BC\right)=d\left(A;BM\right)\Rightarrow\left[{}\begin{matrix}\overrightarrow{BC}=4\overrightarrow{BM}\\\overrightarrow{BC}=-4\overrightarrow{BM}\end{matrix}\right.\)
\(\overrightarrow{BC}=\left(-3;-3\right)\) ; \(\overrightarrow{BM}=\left(x-2;y-1\right)\)
TH1: \(\overrightarrow{BC}=4\overrightarrow{BM}\Rightarrow\left(-3;-3\right)=\left(4x-8;4y-4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}4x-8=-3\\4y-4=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{4}\\y=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow x^2-y^2=\frac{3}{2}\)
TH2: \(\overrightarrow{BC}=-4\overrightarrow{BM}\Rightarrow\left(-3;-3\right)=\left(-4x+8;-4y+4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-4x+8=-3\\-4y+4=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{11}{4}\\y=\frac{7}{4}\end{matrix}\right.\) \(\Rightarrow x^2-y^2=\frac{9}{2}\)
Vì M∈BC⇒d(A;BC)=d(A;BM)⇒⎡⎣−−→BC=4−−→BM−−→BC=−4− −→BMM∈BC⇒d(A;BC)=d(A;BM)⇒[BC→=4BM→BC→=−4BM→
−−→BC=(−3;−3)BC→=(−3;−3) ; −−→BM=(x−2;y−1)BM→=(x−2;y−1)
Trường hợp 1: −−→BC=4−−→BM⇒(−3;−3)=(4x−8;4y−4)BC→=4BM→⇒(−3;−3)=(4x−8;4y−4)
⇒{4x−8=−34y−4=−3⇒{4x−8=−34y−4=−3 ⇒{x=54y=14⇒{x=54y=14 ⇒x2−y2=32⇒x2−y2=32
Trường hợp 2: −−→BC=−4−−→BM⇒(−3;−3)=(−4x+8;−4y+4)BC→=−4BM→⇒(−3;−3)=(−4x+8;−4y+4)
⇒{−4x+8=−3−4y+4=−3⇒{−4x+8=−3−4y+4=−3 ⇒{x=114y=74⇒{x=114y=74 ⇒x2−y2=92