1: f(2)=2^2=4
=>A thuộc (P)
2: bạn bổ sung lại đề đi bạn
1: f(2)=2^2=4
=>A thuộc (P)
2: bạn bổ sung lại đề đi bạn
Trong mặt phẳng tọa độ Oxy,cho Parabol (P):y=x^2 và đường thẳng (d): y=2x-m+1 (m là tham số)
a) Tìm tọa độ giao điểm của (d) và (P) khi m=2
b) Tìm M để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt có tung độ là y1,y2 thỏa mãn
trong mặt phẳng tọa độ oxy cho parabol (p) y=x^2/2 và đường thẳng (d) có phương trình y = mx-m+2
a) chứng minh rằng với mọi m , (d) lun cắt (P) tại 2 điểm A,B phân biệt . giả sử tọa độ của 2 điểm A,B là (x1;y1) và (x2;y2) . cm y1+y2 >= (2\(\sqrt{2}\) -1)(x1+x2)
Cho parabol (P): y=x2 và đường thẳng d: y=2x−3+m2(x là ẩn, m là tham số) a) Xác định m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt A và B. b) Gọi y1 và y2 lần lượt là tung độ của hai điểm A và B trên mặt phẳng tọa độ Oxy. Tìm m sao cho y1-y2=8
Câu 1 : Cho hàm số y = 1/2x² có đồ thị là parabol và đường thẳng d có phương trình là y = x + m. Tìm m để d cắt parabol tại hai điểm phân biệt A( x1; y1) B(x2 ; y2) và thỏa mãn 1/2y1 + 1/2y2 = 2
Câu 2: cho một tam giác có đường cao với độ dài bằng một nửa độ dài cạnh đáy tương ứng nếu tăng chiều cao thêm 2 m và cạnh tương ứng tăng thêm 6 m thì được một tam giác có diện tích gấp đôi diện tích tam giác ban đầu Tính diện tích của tam giác ban đầu
Tìm tham số m để đường thẳng d: y = mx + m + 1 và parabol (P): y = x 2 cắt nhau tại hai điểm phân biệt có tọa độ ( x 1 ; y 1 ) ; ( x 2 ; y 2 ) thỏa mãn y 1 + y 2 > 5
A. m >3 hoặc m< -1
B. m >-3 hoặc m >1
C. −3 < m < 1
D. m< -3 hoặc m >1
Có bao nhiêu giá trị nguyên của tham số m để đường thẳng d: y = 2mx – 2m + 3 và parabol (P) y = x 2 cắt nhau tại hai điểm phân biệt có tọa độ ( x 1 ; y 1 ) ; ( x 2 ; y 2 ) thỏa mãn y 1 + y 2 < 9
A. 1
B. 3
C. 2
D. 0
Cho parabol (P): y=x2 và đường thẳng d: y=2x−3+m2(x là ẩn, m là tham số) a) Xác định m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt A và B. b) Gọi y1 và y2 lần lượt là tung độ của hai điểm A và B trên mặt phẳng tọa độ Oxy. Tìm m sao cho y1-y2=8
Trong mặt phẳng tọa độ Oxy, cho (P): y=x2 và đường thẳng (d): y=2x+4m2-8m+3 (m là tham số thực). Tìm các giá trị của m để (P) và (d) cắt nhau tại 2 điểm phân biệt A(x1,y1), B(x2,y2) thỏa mãn điều kiện y1+y2=10
BT: cho hàm số :y= \(\frac{1}{2}x^2\)(P)
a, Tìm giá trị của m để đường thẳng (d) : y = (m-4)x+m+1 cắt đồ thì hàm số trên tại điểm aA có hoành độ bằng 2. Rồi tìm tọa độ thứ 2 khác A.
b,Cmr với mọi giá trị của m thì đường thẳng (d) và parabol (P) cắt nhau tại 2 điểm phân biệt.
c, Gọi y1;y2 là tung độ giao điểm của đồ thị (d) và (P). Tìm m để y1+y2 đạt GTNN