\(\overrightarrow{OA}=\left(3;1\right);\overrightarrow{OB}=\left(2;10\right)\)
\(\overrightarrow{OA}\cdot\overrightarrow{OB}=3\cdot2+1\cdot10=16\)
\(\overrightarrow{OA}=\left(3;1\right);\overrightarrow{OB}=\left(2;10\right)\)
\(\overrightarrow{OA}\cdot\overrightarrow{OB}=3\cdot2+1\cdot10=16\)
Trong mặt phẳng tọa độ Oxy, cho ba điểm A(3;-1); B(2; 10); C(-4; 2). Tính tích vô hướng A B → . A C → .
A. A B → . A C → = 40.
B. A B → . A C → = − 40.
C. A B → . A C → = 26.
D. A B → . A C → = - 26.
Trong mặt phẳng tọa độ Oxy, cho ba điểm A(3; -1); B(2; 10); C(-4; 2). Tính tích vô hướng A B → . A C → .
A. 40
B. – 40
C. 26
D. – 26
Trong mặt phẳng tọa độ Oxy cho ba điểm A( 2; -1) ; B( 2; 10) và C(-4; 2). Tính tích vô hướng A B → . A C →
A. 33
B. 17
C. 24
D. 33
Trong mặt phẳng với hệ toạ độ Oxy cho elíp E : x 2 9 + y 2 4 = 1 và hai điểm A( 3; -2); B( -3;-2) Tìm trên (E) điểm C sao cho tam giác BAC có diện tích lớn nhất.
A. C( 0; 3)
B.C( 0;2)
C. C(3;0)
D. C( 1;0)
Trong mặt phẳng tọa độ Oxy, cho hai vectơ a → = 4 i → + 6 j → và b → = 3 i → − 7 j → . Tính tích vô hướng a → . b → .
A. – 30
B. 3
C. 30
D. 43
Trong mặt phẳng Oxy cho vectơ a→(-3; 1) và b→(2; 2). Hãy tính tích vô hướng a→.b→.
Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có A(-1;2), B(3;4), C(1;-6). Tìm quỹ tích
các điểm M sao cho hai tam giác MAB và MAC có diện tích bằng nhau.
Trong mặt phẳng tọa độ Oxy, cho ba điểm A 3 ; − 1 , B 2 ; 10 , C − 4 ; 2 . Tính tích vô hướng A B → . A C → .
A. 40
B. – 40
C. 26
D. – 26
trong hệ toạ độ oxy cho tam giác abc a(4,20 b(4,-5) c(1,-1) tích vô hướng ab.ac