Trong mặt phẳng tọa độ Oxyz, tập hợp điểm biểu diễn của các số phức z=2+bi với bÎR là đường thẳng
A. x = 2
B. Song song với trục Ox
C. y = 2
D. Vuông góc với trục Oy
Xét các điểm số phức z thỏa mãn z ¯ + i z + 2 là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn số phức z là một đường tròn có bán kính bằng:
A. 1.
B. 5 4
C. 5 2
D. 3 2
Xét các số phức z thỏa mãn z ¯ - 2 i z + 2 là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng?
A. 2 2
B. 2
C. 2
D. 4
Trên mặt phẳng tọa độ Oxyz, tìm tập hợp các điểm M biểu diễn số phức z thỏa mãn z = z - 3 + 4 i là đường thẳng
A. 2 x - 3 = 0
B. 6 x - 8 y - 25 = 0
C. 6 x + 8 y - 25 = 0
D. y - 2 = 0
Cho số phức z thỏa mãn z + 3 - 4 i = 5 . Biết rằng tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức z là một đường tròn. Tim tọa độ tâm I và bán kính R của đường tròn đó.
A. I 3 ; - 4 , R = 5
B. I - 3 ; 4 , R = 5
C. I 3 ; - 4 , R = 5
D. I - 3 ; 4 , R = 5
Cho số phức z thỏa mãn z + 3 − 4 i = 5. Biết rằng tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức z là một đường tròn. Tìm tọa độ tâm I và bán kính R của đường tròn đó.
A. I 3 ; − 4 , R = 5 .
B. I − 3 ; 4 , R = 5 .
C. I 3 ; − 4 , R = 5.
D. I − 3 ; 4 , R = 5.
Trong mặt phẳng tọa độ Oxyz, tập hợp điểm biểu diễn số phức z thỏa mãn i z + 3 - i = 2 là đường cong có phương trình
A. ( x + 3 ) 2 + ( y - 1 ) 2 = 4
B. ( x - 1 ) 2 + ( y - 3 ) 2 = 4
C. ( x - 3 ) 2 + ( y + 1 ) 2 = 4
D. ( x + 1 ) 2 + ( y + 3 ) 2 = 4
Cho số phức z có môđun bằng 8. Biết rằng tập hợp điểm trong mặt phẳng tọa độ biểu diễn số phức w = 2 z + 4 − 3 i là đường tròn tâm I(a,b), bán kính R. Tổng a + b + R bằng
A. 6.
B. 9.
C. 15.
D. 17.
Xét các số phức z thoả mãn z ¯ - 2 i z + 3 là số thuần ảo. Trên mặt phẳng toạ độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng
A. 13
B. 11
C. 11 2
D. 13 2