Trong mặt phẳng Oxy, cho tam giác ABC cân tại A, đường thẳng AC có phương trình : 4x-3y+8=0 . Gọi H là trung điểm của BC, D là hình chiếu của H trên cạnh AC, I là trung điểm của HD, đường thẳng BD đi qua M(9,-12), đường thẳng AI có phương trình : 13x-16y+51=0. Viết phương trình đường thẳng BC
1) Trong mặt phẳng Oxy cho tam giác ABC, hai cạnh AB, AC theo thứ tự có phương trình x + y - 2 =0 và 2x + 6y - 3=0. Cạnh BC có trung điểm M (-1;1). Viết phương trình đường tròn ngoại tiếp tam giác ABC
1. Giải hệ \(\left\{{}\begin{matrix}y^3-x^3+3x^2=6y^2-16y+7x+11\\\left(y+2\right)\sqrt{x+4}+\left(x+9\right)\sqrt{2y-x+9}=x^2+9y+1\end{matrix}\right.\)
2. Cho tam giác ABC nội tiếp (C) có tâm O. Gọi I là trung điểm AC và M là điểm thỏa mãn \(\overrightarrow{OM}=2\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OC}\). Biết OM vuông góc với BI và \(AC^2=3BC.BA\). Tính góc ABC
Cho tam giác \(ABC\) có \(B\left(1;2\right)\). Đường phân giác trong góc A có phương trình \(x-y-3=0\), đường trung tuyến qua C có phương trình \(x+4y+9=0\). Lập phương trình các cạnh của tam giác \(ABC\).
Trong mặt phẳng oxy cho tam giác abc có A (2,3) B (1, -2) C (4,4)
A) viết phương trình các cạnh tam giác ABC
B ) Tính độ dài đường cao AH cua tam giác abc suy ra S tam giác abc
C) tìm tọa độ giao điểm của đường thẳng ac 3 đường thẳng d : x+y+1=0
D) viết Pt đường thẳng d' qua b//ab
Giúp mình với
Trong mặt phẳng oxy cho tam giác abc có A (2,3) B (1, -2) C (4,4)
A) viết phương trình các cạnh tam giác ABC
B ) Tính độ dài đường cao AH cua tam giác abc suy ra S tam giác abc
C) tìm tọa độ giao điểm của đường thẳng ac 3 đường thẳng d : x+y+1=0
D) viết Pt đường thẳng d' qua b//ab
Giúp mình với
1, Cho tam giác ABC có G là trọng tâm, biết rằng vecto AG= x vecto AB + y vecto AC (x;y ∈ R). tính T=x+y.
2, cho tam giác ABC đều cạnh a, H là trung điểm của BC. Tính |vecto CA - vecto HC|.
3, Cho tập hợp A= x ∈ R; x=3k, k ∈ Z, 10<x<100. Tổng các phần tử của tập hợp A bằng bao nhiêu?
Ai giúp mình giải 10 bài này với. Mình cảm ơn m.n rất nhiều (Giải chi tiết dễ hiểu , vì đây là bài tự luận )
Bài 1: Trong mặt phẳng tọa độ Oxy, viết phương trình đường thẳng d biết d vuông góc với đường thẳng △: \(2x-y+1=0\)và cắt đường tròn (C): \(x^2+y^2+2x-4y-4=0\) theo một dây cung có độ dài bằng 6.
Bài 2: Giải phương trình: \(x+4-\sqrt{14x-1}=\frac{\sqrt{10x-9-1}}{x}\)
Bài 3:
a) Cho\(sinx=\frac{3}{5}\left(\frac{\pi}{2}< x< \pi\right)\). Tính \(sin2x\), \(cotx\),\(tan\left(x-\frac{\pi}{4}\right)\)
b)Chứng minh rằng: \(sin^6x+cox^6x=\frac{5}{8}+\frac{3}{8}cos4x\)
c)Cho tam giác ABC có các góc A, B, C thòa mãn hệ thức:
\(sinA+sinB+sinC=sin2A+sin2B+sin2C\)
Chứng minh tam giác ABC là tam giác đều.
Bài 4: Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm M(1;3), N(-1;2) và đường thẳng d: \(3x-4y-6=0\)
a)Viết phương trình đường thẳng đi qua hai điểm M, N.
b)Viết phường trình đường tròn tâm M và tiếp xúc với đường thằng d
c)Cho đường tròn(C) có phương trình: \(x^2+y^2-6x-4y-3=0\) .Viết phương trình đường thẳng d' qua M cắt đường tròn (C) tại hai điểm AB có độ dài nhỏ nhất.
Bài 5: Rút gọn biểu thức \(A=\frac{sinx+sin2x+sin3x}{cosx+cos2+cos3x}\)
Bài 6:Trong mặt phương với hệ tọa độ Oxy cho tam giác ABC cân tại C, phương trình đường thẳng chứa cạnh AB là \(x+y-2=0\) .Biết tam giác ABC có trọng tâm \(G\left(\frac{14}{3};\frac{5}{3}\right)\)và diện tích bằng \(\frac{65}{2}\). Viết phương trình đường tròn ngoại tiếp tam giác ABC.
Bài 7: Cho biểu thức \(A=\frac{cos2\alpha-cos4\text{α}}{sin4\text{α}-sin2\text{α}}+\frac{cos\text{α}-cos5\text{α}}{sin5\text{α}-sin\text{α}}\), \(a\ne k\frac{\pi}{2};a\ne\frac{\pi}{6}+k\frac{\pi}{3}\).Rút gọn biểu thức A. Từ đó tìm các giá trị của α để A=2
Bài 8:Trong mặt phẳng Oxy cho điểm A(1;0) và đường tròn (C):\(x^2+y^2-2x+4y-5=0\).
a)Xét vị trí của điểm A đối với đường tròn (C)
b)Gọi d là đường thẳng cắt đường tròn (C) tại hai điễm B, C sao cho tam giác ABC vuông cân tại A, viết phường trình đường thẳng d.
Bài 9: Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(7;2), B(0;-4), C(3;0).
a)Viết phương trình đường thẳng BC.
b)Viết phường trình đường tròn (T) tâm A và tiếp xúc với BC.
c)Tìm điềm M trên đường tròn (T) sao cho \(MB^2-MC^2=53\)
Bài 10: Cho a, b, c là độ dài ba cạnh của một tam giác có diện tích bằng \(\sqrt{3}\). Chứng minh rằng
\(\frac{a^4+b^4}{a^6+b^6}+\frac{b^4+c^4}{b^6+c^6}+\frac{c^4+a^4}{c^6+c^4}\le\frac{3}{4}\)
4) Cho (C):x2+y2-6x+2y+6=0. Lập phương trình tiếp tuyến (d) của (C) biết:
a) (d) tiếp xúc với (C) tại M(3;1)
b)(d) song song (Δ): 5x+12y-2007=0
c) (d) vuông góc \(\Delta^'\) : x+2y=0
5) Trong mặt phẳng tọa độ Oxy cho ΔABC, biết A(-1;2), B(2;0), C(-3;1)
a) viết phương trình các cạnh AB,BC,AC của tam giác
b) viết phương trình đường cao AH,BH,CH của tam giác với H là trực tâm tam giác
c) viết phương trình đường trung tuyến AG,BG,CG với G là trọng tâm tam giác
d) viết phương trình đường tròn tâm A qua B
e) viết phương trình đường tròn tâm C và tiếp xúc cạnh AB
f) Tìm điểm M trên đường thẳng BC sao cho S\(\Delta ABC\)=\(\frac{1}{3}S_{\Delta ABC}\)