Trong mặt phẳng Oxy , cho các điểm A( 1; 3) ; B( 4; 0) ; C(2; -5). Tọa độ điểm M thỏa mãn M A → + M B → - 3 M C → = 0 → là
A. M(1; -18).
B. M(1 ;18).
C. M(18; -1).
D. M(-18; -1).
Trong mặt phẳng tọa độ Oxy , cho A(1 ; 3), B(5 ; 1). Tìm tọa độ điểm I thỏa mãn: \(\overrightarrow{IO}+\)\(\overrightarrow{IA}\)-\(\overrightarrow{3IB}\) = \(\overrightarrow{0}\)
A. I( 8; 0) B. I( 14; 0) C. I( 6; 14) D. I( 14; 4)
trong mặt phẳng tọa độ oxy, cho 3 điểm A (3;3) B (4;-2) C(-1;-1)
1. tính vecto AB và vecto BC từ đó suy ra A,B, C là ba đỉnh của một tam giác
2. Tìm tọa độ điểm M thỏa mãn vecto MA + 4MB - MC = 0
3. Cho hình bình hành ABCD. Gọi I là trung điểm cạnh bC và E là điểm xác định bởi vecto AE = 2/3AC. CMR: vecto DI = AB - 1/2AD và 3 điểm D, E, I thẳng hàng
Trong mặt phẳng tọa độ Oxy, cho các điểm M(0,4) và P(9, -3) .Tọa độ điểm N đối xứng với điểm M qua điểm P là : A. N(18,10) B. N(18, -10) C. N(9/2 ; 1/2) D. N(9; -7)
Trên mặt phẳng tọa độ Oxy cho các điểm A(–1; 1); B(1; 2); C(4; 0). Tìm tọa độ điểm M sao cho ABCM là hình bình hành là:
A. M(2; 1)
B. M(2; –1)
C. M(–1; 2)
D. M(1; 2)
Trong mặt phẳng tọa độ Oxy, Cho tam giác ABC biết A(–2 ; 2), B(2 ; – 1), C(5 ; 3 ) và điểm E(–1; 0 ). a) Chứng minh rằng tam giác ABC cân.Tính diện tích tam giác ABC. b) Tìm tọa độ các điểm M(m; 2m-5) sao cho MO=√5AE5AE ( biết O là gốc tọa độ và m lớn hơn 0 ).
Trong mặt phẳng tọa độ Oxy, Cho tam giác ABC biết A(–2 ; 2), B(2 ; – 1), C(5 ; 3 ) và điểm E(–1; 0 ). a) Chứng minh rằng tam giác ABC cân.Tính diện tích tam giác ABC. b) Tìm tọa độ các điểm M(m; 2m-5) sao cho MO=\(\sqrt{5}AE\) ( biết O là gốc tọa độ và m lớn hơn 0 ).
Trong mặt phẳng Oxy, cho A(1;0), B(3;-4), C(3;-2). Gọi I là trung điểm của AC . Tọa độ của \(\overrightarrow{BI}\)là:
A. (-1;3) B. (5;3) C. (-1;-5) D. (5;-5)
Trong mặt phẳng tọa độ Oxy cho 2 điểm B(2;2), C(0;1). Tọa độ các điểm M nằm trên trục hoành thỏa MB=2MC là