Đáp án D
Phương pháp:
Sử dụng quy tắc nhân.
Cách giải:
Số cách chọn điểm đầu là 2018 cách.
Số cách chọn điểm cuối là 2017 cách (trừ vector không).
Vậy có 2018 × 2017 = 4070306 cách
Đáp án D
Phương pháp:
Sử dụng quy tắc nhân.
Cách giải:
Số cách chọn điểm đầu là 2018 cách.
Số cách chọn điểm cuối là 2017 cách (trừ vector không).
Vậy có 2018 × 2017 = 4070306 cách
Trong mặt phẳng cho 2010 điểm phân biệt sao cho 3 điểm bất kì không thẳng hàng. Hỏi có bao nhiêu vecto mà có điểm đầu và điểm cuối thuộc 2010 điểm đã cho?
A. 2021055
B. 4038090
C. 4040100
D. 2019045
Trong không gian cho 2n điểm phân biệt (n>4, nÎN), trong đó không có ba điểm nào thẳng hàng và trong 2n điểm đó có đúng n điểm nằm cùng trên mặt phẳng và không có 4 điểm nào ngoài 4 điểm trong n điểm này đồng phẳng. Tìm n sao cho từ 2n điểm đã cho tạo ra đúng 201 mặt phẳng phân biệt
A. 8
B. 12
C. 5
D. 6
Trong không gian cho 2n điểm phân biệt n ≥ 4 , ∈ N , trong đó không có ba điểm nào thẳng hàng và trong 2n điểm đó có đúng n điểm cùng nằm trên một mặt phẳng. Tìm tất cả các giá trị của n sao cho từ 2n điểm đã cho tạo ra đúng 505 mặt phẳng phân biệt?
A. 12
B. 7
C. 24
D. 8
Trong 2019 điểm phân biệt cho trước, có bao nhiêu vectơ khác 0 → với điểm đầu và điểm cuối là 2 trong 2019 điểm đã cho?
A. C 2019 2
B. 2019 2
C. A 2019 2017
D. A 2019 2
Cho 10 điểm phân biệt. Hỏi có thể tạo ra bao nhiêu vectơ có điểm đầu và điểm cuối không trùng nhau được lấy từ 10 điểm trên?
A. C 10 2 .
B. A 10 2 .
C. 20
D. 2 10
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x + + z - 4 = 0 , mặt cầu S : x 2 + y 2 + z 2 - 8 x - 6 y - 6 z + 18 = 0 và điểm M 1 ; 1 ; 2 ∈ α . Đường thẳng d đi qua M và nằm trong mặt phẳng α cắt mặt cầu (S) tại hai điểm phân biệt A, B sao cho dây cung AB có độ dài nhỏ nhất. Đường thẳng d có một vectơ chỉ phương là
A. u 1 ⇀ = 2 ; - 1 ; - 1
B. u 1 ⇀ = 1 ; 1 ; - 2
C. u 1 ⇀ = 1 ; - 2 ; 1
D. u 1 ⇀ = 0 ; 1 ; - 1
Trong mặt phẳng tọa độ Oxy. Ở các góc phần tư thứ I, thứ II, thứ III, thứ IV ta lần lượt lấy 1, 2, 3 và 4 điểm phân biệt (các điểm không nằm trên các trục tọa độ và ba điểm bất kì không thẳng hàng). Ta lấy 3 điểm bất kì trong 10 điểm trên. Tính xác suất để 3 điểm đó tạo thành tam giác có 2 cạnh đều cắt trục tọa độ.
A. 5 6 .
B. 2 5 .
C. 13 24 .
D. 15 29 .
Trong mặt phẳng cho 10 điểm phân biệt A 1 , A 2 , . . . , A 10 trong đó có 4 điểm A 1 , A 2 , A 3 , A 4 thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác có 3 đỉnh được lấy trong 10 điểm trên?
A. 116 tam giác
B. 80 tam giác
C. 96 tam giác
D. 60 tam giác
Trong mặt phẳng cho 10 điểm phân biệt A 1 , A 2 , ... , A 10 trong đó có 4 điểm A 1 , A 2 , A 3 , A 4 thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác có 3 đỉnh được lấy trong 10 điểm trên?
A. 116 tam giác
B. 80 tam giác
C. 96 tam giác
D. 60 tam giác