Đáp án B
Phương trình mặt phẳng (Q) có dạng: x - 2y - 3z + m = 0 (m ≠ 10).
Vì (Q) đi qua điểm A(2; -1; 0) nên ta có 2 + 2 + m = 0 <=> m = -4.
Vậy phương trình mặt phẳng (Q) là x - 2y - 3z -4 = 0 hay -x + 2y + 3z + 4 = 0.
Đáp án B
Phương trình mặt phẳng (Q) có dạng: x - 2y - 3z + m = 0 (m ≠ 10).
Vì (Q) đi qua điểm A(2; -1; 0) nên ta có 2 + 2 + m = 0 <=> m = -4.
Vậy phương trình mặt phẳng (Q) là x - 2y - 3z -4 = 0 hay -x + 2y + 3z + 4 = 0.
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;1;3). Mặt phẳng (P) đi qua A và song song với mặt phẳng (Q): x+2y+3z+2=0 có phương trình là
A. x+2y+3z-9=0
B.x+2y+3z-13=0
C. x+2y+3z+5=0
D. x+2y+3z+13=0
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;1), B(2;1;2) và mặt phẳng (P):x+2y+3z+3=0. Phương trình mặt phẳng ( α ) đi qua hai điểm A, B và vuông góc với mặt phẳng là:
A. x + 2y -z +6 =0
B.x + 2y -3z +6 =0
C. x -2y + z-2 =0
D. x + 2y -3z +6 =0
Trong không gian với hệ toạ độ Oxyz, (α) là mặt phẳng đi qua điểm A ( 2 ; - 1 ; 5 ) và vuông góc với hai mặt phẳng ( P ) : 3 x – 2 y + z – 1 = 0 v à ( Q ) : 5 x – 4 y + 3 z + 10 = 0 . Phương trình mặt phẳng (α) là:
A. x + 2y + z- 5 = 0.
B. 2x – 4y – 2z – 9 = 0.
C. x - 2y + z -1 = 0
D. x- 2y- z + 1 = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 2 = y - 3 1 = z - 2 1 và hai mặt phẳng
(P): x-2y+2z=0. (Q): x-2y+3z-5=0. Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M ( - 1 ; - 2 ; 5 ) và vuông góc với hai mặt phẳng ( Q ) : x + 2 y - 3 z + 1 = 0 v à ( R ) : 2 x - 3 y + z + 1 = 0 .
A. x- y + z – 6 = 0
B. x + y - z + 8 = 0
C. –x + y + z – 4 = 0
D. x + y + z - 2 = 0
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M ( - 1 ; - 2 ; 5 ) và vuông góc với hai mặt phẳng ( Q ) : x + 2 y - 3 z + 1 = 0 v à ( R ) : 2 x - 3 y + z + 1 = 0 .
A. x- y + z – 6 = 0
B. x + y - z + 8 = 0
C. –x + y + z – 4 = 0
D. x + y + z - 2 = 0
Trong không gian với hệ trục tọa độ Oxyz, một vecto pháp tuyến của mặt phẳng α : x-2y+3z+1=0
A. (3;-2;1)
B. (1;-2;3)
C. (1;2;-3)
D. (1;-2;-3)
Trong không gian Oxyz, cho hai mặt phẳng P : x + 3 z + 2 = 0 , Q : x + 3 z - 4 = 0 . Mặt phẳng song song và cách đều P , Q có phương trình là
Trong không gian tọa độ Oxyz, cho mặt phẳng (P): 2x - 2y + z - 4 = 0 và mặt phẳng (Q): x + y - 3z - 5 = 0 . Gọi là góc giữa hai mặt phẳng và . Khẳng định nào sau đây là đúng?