Trong không gian với hệ trục tọa độ Oxy cho A(1;2;0),B(−1;0;2). Viết phương trình mặt cầu (S) tâm A và bán kính AB.
A. x − 1 2 + y − 2 2 + z 2 = 4
B. x − 1 2 + y + 2 2 + z 2 = 8
C. x + 1 2 + y − 2 2 + z 2 = 12
D. x + 1 2 + y − 2 2 + z 2 = 12
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 5 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 9 . Bán kính R của mặt cầu (S) là
A. 3
B. 6
C. 9
D. 18
Trong không gian Oxyz, cho mặt cầu (S)có phương trình ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 25 . Tọa độ tâm I và bán kính R của (S) là
A. I(1;2;3) và R=5.
B. I(-1;-2;-3) và R=5.
C. I(1;2;3) và R=25.
D. I(-1;-2;-3) và R=25
Trong không gian Oxyz, cho mặt cầu S : ( x − 4 ) 2 + ( y + 5 ) 2 + ( z − 3 ) 2 = 4 . Tìm tọa độ tâm I và bán kính R của mặt cầu.
A. I − 4 ; 5 ; − 3 v à R = 2
B. I 4 ; − 5 ; 3 v à R = 2
C. I − 4 ; 5 ; − 3 v à R = 4
D. I 4 ; − 5 ; 3 v à R = 4
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng a : x 1 = y 1 = z - 2 ; b : x + 1 - 2 = y 2 = z + 1 - 1 và mặt phẳng ( P ) : x - y - z = 0 . Viết phương trình của đường thẳng d song song với (P), cắt a và b lần lượt tại M và N mà M N = 2 .
A. d : 7 x - 4 3 = 7 y + 4 8 = 7 z + 8 - 5
B. d : 7 x + 4 3 = 7 y - 4 8 = 7 z + 8 - 5 .
C. d : 7 x - 1 3 = 7 y - 4 8 = 7 z + 3 - 5
D. d : 7 x - 1 3 = 7 y + 4 8 = 7 z + 8 - 5
Trong không gian tọa độ Oxyz, cho mặt cầu (S) có phương trình (x-2)2 + (y+1)2 + (z-3)2 = 20. Mặt phẳng có phương trình x-2y+2z-1=0 và đường thẳng ∆ có phương trình x 1 = y + 2 2 = z + 4 - 30 . Viết phương trình đường thẳng ∆ ' nằm trong mặt phẳng α vuông góc với ∆ đồng thời cắt (S) theo một dây cung có độ dài lớn nhất.
Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 9 điểm A(0;0;2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là
A. ( P ) : x + 2 y + 3 z + 6 = 0
B. ( P ) : x + 2 y + z - 2 = 0
C. ( P ) : x - 2 y + z - 6 = 0
D. ( P ) : 3 x + 2 y + 2 z - 4 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A (1;-1;2) và đường thẳng d : x 1 = y 2 = z + 2 - 2 . Mặt cầu (S) tâm A cắt đường thẳng d tại 2 điểm phân biệt B, C sao cho diện tích tam giác ABC bằng 12. Phương trình mặt cầu (S) là:
A. S : x - 1 2 + y + 1 2 + z - 2 2 = 36
B. S : x - 1 2 + y + 1 2 + z - 2 2 = 25
C. S : x - 1 2 + y + 1 2 + z - 2 2 = 144
D. S : x - 1 2 + y + 1 2 + z - 2 2 = 64
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y + 1 ) 2 + z 2 = 11 và hai đường thẳng d 1 : x - 5 1 = y + 1 1 = z - 1 2 , d 2 : x + 1 1 = y 2 = z 1 . Phương trình tất cả các mặt phẳng tiếp xúc với mặt cầu ( S ) đồng thời song song với hai đường thẳng d 1 , d 2
A. 3 x - y - z - 7 = 0
B. 3 x - y - z - 7 = 0 v à 3 x - y - z - 15 = 0
C. 3 x - y - z + 7 = 0
D. 3 x - y - z - 15 = 0