Chọn đáp án A.
Do đường thẳng song song với d nên có cùng véc tơ chỉ phương với d là (3;-4;7).
Chọn đáp án A.
Do đường thẳng song song với d nên có cùng véc tơ chỉ phương với d là (3;-4;7).
Trong không gian với hệ tọa độ vuông góc Oxyz, cho đường thẳng d : x = 2 + 3 t y = 5 − 4 t z = − 6 + 7 t , t ∈ ℝ và điểm A 1 ; 2 ; 3 . Đường thẳng đi qua A và song song với đường thẳng d có véctơ chỉ phương là
A. u → = 3 ; − 4 ; 7 .
B. u → = 3 ; − 4 ; − 7 .
C. u → = − 3 ; − 4 ; − 7 .
D. u → = − 3 ; − 4 ; 7 .
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân giác góc A là x 1 = y - 6 - 4 = z - 6 - 3 Biết rằng điểm M(0;5;3) thuộc đường thẳng AB và điểm N(1;1;0) thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?
A. u 1 → = 1 ; 2 ; 3
B. u 2 → = 0 ; - 2 ; 6
C. u 3 → = 0 ; 1 ; - 3
D. u 4 → = 0 ; 1 ; 3
Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : x = 2 + 3 t y = 5 - 4 t z = - 6 + 7 t , t ∈ R
và điểm A (-1;2;3) Phương trình mặt phẳng qua A vuông góc với đường thẳng d là
A. 3x-4y+7z+10 = 0
B. 3x-4y+7z+16 = 0
C. 3x-4y+7z-16 = 0
D. 3x-4y+7z-10 = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng x = 1 + t y = 2 + t z = 3 . Gọi ∆ là đường thẳng đi qua A ( 1 ; 2 ; 3 ) và có vectơ chỉ phương u ⇀ = ( 0 ; - 7 ; - 1 ) . Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A. d : x = 1 + 5 t y = 2 - 2 t z = 3 - t
B. d : x = 1 + 6 t y = 2 + 11 t z = 3 + 8 t
C. d : x = - 4 + 5 t y = - 10 + 12 t z = - 2 + t
D. d : x = - 4 + 5 t y = - 10 + 12 t z = 2 + t
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x - y - z - 1 = 0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 , cho A 1 ; 1 ; - 2 Đường thẳng đi qua A, song song với (P) và vuông góc với d có phương trình là
A. x - 1 2 = y - 1 5 = z + 2 3
B. x - 1 2 = y - 1 - 5 = z 2
C. x - 1 2 = y - 1 - 5 = z + 2 3
D. x - 1 2 = y - 1 5 = z + 2 - 3
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x 1 = y - 1 2 = z + 2 2 mặt phẳng (P): 2x+y+2z-5=0 và điểm A(1; 1; -2) Phương trình chính tắc của đường thẳng ∆ đi qua A song song với mặt phẳng (P) và vuông góc với d là
A. ∆ : x - 1 1 = y - 1 2 = z + 2 - 2
B. ∆ : x - 1 2 = y - 1 1 = z + 2 - 2
C. ∆ : x - 1 2 = y - 1 2 = z + 2 - 3
D. ∆ : x - 1 1 = y - 2 2 = z + 2 2
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P : 2 x - 2 y + z = 0 và đường thẳng d : x + 1 1 = y 2 = z - 1 . Gọi ∆ là một đường thẳng chứa trong (P), cắt và vuông góc với d. Véc tơ u → a ; 1 ; b là một véc tơ chỉ phương của ∆ . Tính tổng S = a + b.
A. S = 1
B. S = 0
C. S = 2
D. S = 4
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - y - z - 1 = 0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 , cho A(1; 1; -2). Viết phương trình đường thẳng đi qua A, song song với (P) và vuông góc với d
A. x - 1 2 = y - 1 5 = z + 2 3
B. x - 1 2 = y - 1 - 5 = z 2
C. x - 1 2 = y - 1 - 5 = z + 2 - 3
D. x - 1 2 = y - 1 5 = z + 2 - 3
Trong không gian với hệ tọa độ Oxyz,cho đường thẳng d đi qua điểm M(3;3; –2) và có véc tơ chỉ phương u → = 1 ; 3 ; 1 .Phương trình của d là
A. x + 3 1 = y + 3 3 = z - 2 - 2
B. x - 3 1 = y - 3 3 = z + 2 1
C. x - 3 1 = y - 3 3 = z - 2 - 2
D. x + 1 3 = y + 3 3 = z + 2 - 2