Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - y - z - 1 = 0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 , cho A(1; 1; -2). Viết phương trình đường thẳng đi qua A, song song với (P) và vuông góc với d
A. x - 1 2 = y - 1 5 = z + 2 3
B. x - 1 2 = y - 1 - 5 = z 2
C. x - 1 2 = y - 1 - 5 = z + 2 - 3
D. x - 1 2 = y - 1 5 = z + 2 - 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x - y - z - 1 = 0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 , cho A 1 ; 1 ; - 2 Đường thẳng đi qua A, song song với (P) và vuông góc với d có phương trình là
A. x - 1 2 = y - 1 5 = z + 2 3
B. x - 1 2 = y - 1 - 5 = z 2
C. x - 1 2 = y - 1 - 5 = z + 2 3
D. x - 1 2 = y - 1 5 = z + 2 - 3
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : x - 1 2 = y - 1 1 = z - 1 - 1 và mặt phẳng P : x+y+z-3=0. Gọi d là đường thẳng nằm trong (P), đi qua giao điểm của Δ và (P), đồng thời vuông góc với Δ. Giao điểm của đường thẳng d với mặt phẳng tọa độ (Oxy) là
A. M(2;2;0)
B. M(-3;2;0)
C. M(-1;4;0)
D. M(-3;4;0)
Trong không gian với trục tọa độ Oxyz, cho đường thẳng Δ : x − 1 2 = y − 1 = z + 2 3 và mặt phẳng ( α ) : x − 2 y + 2 z − 3 = 0 . Đường thẳng đi qua O, vuông góc với ∆ và song song với mặt phẳng ( α ) có phương trình
A. x 4 = y − 1 = z − 3
B. x 4 = y 1 = z − 3
C. x − 1 4 = y − 1 = z − 3
D. x 4 = y 1 = z − 1 − 3
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-1;1), mặt phẳng (P): x–2y+z-1=0 và đường thẳng d: x 1 = y - 2 2 = z + 1 - 1 . Viết phương trình đường thẳng đi qua A, song song với mặt phẳng (P) cắt đường thẳng d.
A. x - 1 1 = y + 1 1 = z - 1 1
B. x - 1 15 = y + 1 7 = z - 1 1
C. x - 1 4 = y + 1 1 = z - 1 - 2
D. x - 1 13 = y + 1 6 = z - 1 - 1
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 3 - 2 = z + 2 1 và d 2 : x - 5 - 3 = y + 1 2 = z - 2 1 và mặt phẳng (P) có phương trình x + 2 y + 3 z - 5 = 0 . Đường thẳng Δ vuông góc với (P) cắt d 1 và d 2 có phương trình là:
A. ∆ : x - 1 1 = y + 1 2 = z 3
B. ∆ : x - 2 1 = y - 3 2 = z - 1 3
C. ∆ : x - 3 1 = y - 3 2 = z + 2 3
C. ∆ : x - 1 3 = y + 1 2 = z 1
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng: △ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng (P): x+2y+2z-4=0. Phương trình đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với đường thẳng Δ là
A. d : x = - 3 + t y = 1 - 2 t z = 1 - t
B. d : x = 3 t y = 2 + t z = 2 + 2 t
C. d : x = - 2 - 4 t y = - 1 + t z = 4 - t
D. d : x = - 1 - t y = 3 - 3 t z = 3 - 2 t
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x 1 = y - 1 2 = z + 2 2 mặt phẳng (P): 2x+y+2z-5=0 và điểm A(1; 1; -2) Phương trình chính tắc của đường thẳng ∆ đi qua A song song với mặt phẳng (P) và vuông góc với d là
A. ∆ : x - 1 1 = y - 1 2 = z + 2 - 2
B. ∆ : x - 1 2 = y - 1 1 = z + 2 - 2
C. ∆ : x - 1 2 = y - 1 2 = z + 2 - 3
D. ∆ : x - 1 1 = y - 2 2 = z + 2 2
Trong không gian với hệ tọa độ Oxyz, gọi d đi qua điểm A ( 1;-1;2 ) , song song với (P): 2x - y - z + 3 = 0, đồng thời tạo với đường thẳng ∆ : x + 1 1 = y - 1 - 2 = z 2 một góc lớn nhất. Phương trình đường thẳng d là.
A. x - 1 1 = y + 1 - 5 = z - 2 7
B. x - 1 4 = y + 1 - 5 = z + 2 7
C. x - 1 4 = y + 1 5 = z - 2 7
D. x - 1 1 = y + 1 - 5 = z - 2 - 7