Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;-1;2) và mặt phẳng P : 2 x - y + z + 1 = 0 . Mặt phẳng (Q) đi qua điểm A và song song với (P) có phương trình là
A. Q : 2 x - y + z - 5 = 0
B. Q : 2 x - y + z = 0
C. Q : x + y + z - 2 = 0
D. Q : 2 x + y - z + 1 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y 1 = z + 1 3 và mặt phẳng ( Q ) : 2 x + y - z = 0 . Mặt phẳng (P) chứa đường thẳng d và vuông góc với mặt phẳng (Q) có phương trình là:
A. ( P ) : - x + 2 y - 1 = 0
B. ( P ) : x - y - z = 0
C. ( P ) : x - 2 y - 1 = 0
D. ( P ) : x + 2 y + z = 0
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng Q chứa đường thẳng d : x = y x - 2 y + z = 0 và vuông góc với mặt phẳng P : 2 x + y - 1 = 0 .
A. Q : x + 2 y - z + 1 = 0
B. Q : - x + 2 y + z - 1 = 0
C. Q : - x + 2 y - z + 1 = 0
D. Q : - x + 2 y - 2 z + 2 = 0
Trong không gian với hệ tọa độ Oxyz cho điểm \ A 1 ; - 1 ; 2 và mặt phẳng P : 2 x - y + z + 1 = 0 . Mặt phẳng (Q) đi qua điểm A và song song với (P). Phương trình mặt phẳng (Q) là
A. 2 x - y + z = 0
B. x + y + z - 2 = 0
C. 2 x + y - z + 1 = 0
D. 2 x - y + z - 5 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;3) và đường thẳng (d): x - 2 2 = y + 2 - 1 = z - 3 1 . Gọi điểm B thuộc trục Ox sao cho AB vuông góc với đường thẳng (d). Khoảng cách từ B đến mặt phẳng ( α ): 2x+2y-z-1=0 là:
A. 2
B. 2 3
C. 1 3
D. 1
Trong không gian với hệ trục tọa độ Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng Q : x + y + 3 z = 0 , R : 2 x - y + z = 0 là
A. 4 x + 5 y - 3 z + 22 = 0 .
B. 4 x - 5 y - 3 z - 12 = 0 .
C. 2 x + y - 3 z - 14 = 0 .
D. 4 x + 5 y - 3 z - 22 = 0 .
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm A(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x+y+3z=0, (R): 2x-y+z=0 là
A. 4x + 5y – 3z + 22 = 0.
B. 4x – 5y – 3z -12 =0
C. 2x + y – 3z – 14 = 0.
D. 4x + 5y – 3z – 22 = 0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : 2 x − 2 y + z − 5 = 0. Viết phương trình mặt phẳng (Q) song song với mặt phẳng (P), cách (P) một khoảng bằng 3 và cắt trục Ox tại điểm có hoành độ dương.
A. ( Q ) : 2 x − 2 y + z + 4 = 0.
B. ( Q ) : 2 x − 2 y + z − 14 = 0.
C. ( Q ) : 2 x − 2 y + z − 19 = 0.
D. ( Q ) : 2 x − 2 y + z − 8 = 0.
Trong không gian với hệ tọa độ Oxyz, cho điểm I(1;2;–5) và mặt phẳng (P); 2x – 2y + z – 8 = 0. Viết phương trình mặt cầu có tâm I và tiếp xúc với mặt phẳng (P)
A. x - 1 2 + y - 2 2 + z + 5 2 = 25
B. x + 1 2 + y + 2 2 + z - 5 2 = 25
C. x - 1 2 + y - 2 2 + z + 5 2 = 5
D. x + 1 2 + y + 2 2 + z - 5 2 = 36
Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu S có tâm I 1 ; 1 ; 1 và tiếp xúc với mặt phẳng P : 2 x + 2 y + z + 4 = 0
A. x - 1 2 + y - 1 2 + z - 1 2 = 9
B. x - 1 2 + y - 1 2 + z - 1 2 = 3
C. x + 1 2 + y + 1 2 + z + 1 2 = 3
D. x + 1 2 + y + 1 2 + z + 1 2 = 9