Trong không gian với hệ tọa độ Oxyz, mặt cầu S có tâm O và bán kính R không cắt mặt phẳng P : 2 x − y + 2 z − 2 = 0. Khi đó khẳng định nào sau đây đúng?
A. R > 2 3
B. R < 2 3
C. R < 1
D. R ≥ 2 3
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng ( P ) : x − y + 2 z + 1 = 0 và ( Q ) : 2 x + y + z − z = 0. Gọi (S) là mặt cầu có tâm thuộc Ox, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính r. Xác định r sao cho chỉ có duy nhất một mặt cầu (S) thỏa mãn điều kiện bài toán
A. r = 3 2 2 .
B. r = 10 2 .
C. r = 3 .
D. r = 14 2 .
Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (Oxy) cắt mặt cầu S : x - 1 2 + y - 2 2 + z - 3 2 = 16 theo giao tuyến là đường tròn tâm H, bán kính r. Tìm tọa độ tâm H và bán kính r.
A. H 1 ; 2 ; 0 , r = 7
B. H 0 ; 0 ; 3 , r = 7
C. H 1 ; 2 ; 0 , r = 7
D. H 1 ; 2 ; 0 , r = 11
Trong không gian tọa độ Oxyz, cho mặt cầu (S): (x-2)2 + y2 + (z+1)2 = 9 và mặt phẳng (P): 2x-y-2z-3=0. Biết rằng mặt cầu (S) cắt (P) theo giao tuyến là đường tròn (C). Tính bán kính R của (C).
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S tâm I 1 ; - 2 ; 1 ; bán kính R = 4 và đường thẳng d : x 2 = y - 1 - 2 = z + 1 - 1 . Mặt phẳng chứa d và cắt mặt cầu theo một đường tròn có diện tích nhỏ nhất. Hỏi trong các điểm sau điểm nào có khoảng cách đến mặt phẳng P lớn nhất.
A. O(0;0;0)
B. A 1 ; 3 5 ; - 1 4
C. (-1;-2;-3)
D. C(2;1;0)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x + 2y - 2z + 2 =0 và mặt cầu tâm I(1;4;1) bán kính R tiếp xúc với (P). Bán kính R là:
A. R = 7 3
B. R = 3
C. R = 1
D. R = 9
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;0;-1) và mặt phẳng P : x + y - z - 3 = 0 . Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S)
A. R = 3
B. R = 9
C. R = 1
D. R = 5
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;0;-1) và mặt phẳng P : x + y - z - 3 = 0 . Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S).
A. R = 3
B. R = 9
C. R = 1
D. R = 5
Trong không gian với hệ tọa độ Oxyz, cho điểm A 1 ; 0 ; - 1 và mặt phẳng P : x + y - z - 3 = 0 . Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S).
A. R = 3
B. R = 9
C. R = 1
D. R = 5