Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ là giao tuyến của hai mặt phẳng P : z - 1 = 0 và Q : x + y + z - 3 = 0 . Gọi d là đường thẳng nằm trong mặt phẳng P , cắt đường thẳng x - 1 1 = y - 2 - 1 = z - 3 - 1 và vuông góc với đường thẳng . Phương trình của đường thẳng d là
A. x = 3 + t y = t z = 1 + t
B. x = 3 - t y = t z = 1
C. x = 3 + t y = t z = 1
D. x = 3 + t y = - t z = 1 + t
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : x - 1 2 = y - 1 1 = z - 1 - 1 và mặt phẳng P : x+y+z-3=0. Gọi d là đường thẳng nằm trong (P), đi qua giao điểm của Δ và (P), đồng thời vuông góc với Δ. Giao điểm của đường thẳng d với mặt phẳng tọa độ (Oxy) là
A. M(2;2;0)
B. M(-3;2;0)
C. M(-1;4;0)
D. M(-3;4;0)
Trong hệ trục tọa độ Oxyz, cho d là giao tuyến của hai mặt phẳng x - y + 2 z - 1 = 0 và 2 x - z + 3 = 0 . Mặt phẳng (P) đi qua d và vuông góc với mặt phẳng (Oyz) có phương trình là
A. -3y + 5z + 5 = 0
B. 2 y - 5 z + 5 = 0
C. -3y + 5z = 0
D. 2x - 5y + 5 = 0
Trong hệ trục tọa độ Oxyz, cho d là giao tuyến của hai mặt phẳng x − y + 2 z − 1 = 0 và 2 x − z + 3 = 0 . Mặt phẳng (P) đi qua d và vuông góc với mặt phẳng (Oyz) có phương trình là
A. − 3 y + 5 z = 0
B. 2 x − 5 y + 5 = 0
C. − 3 y + 5 z + 5 = 0
D. 2 y − 5 z + 5 = 0
Trong không gian với hệ trục tọa độ Oxyz, gọi (α) là mặt phẳng chứa đường thẳng ∆ : x - 2 1 = y - 1 1 = z - 2 và vuông góc với mặt phẳng (β):x+y+2z+1=0. Khi đó giao tuyến của hai mặt phẳng (α), (β) có phương trình
A. x - 1 = y + 1 1 = z - 1
B. x 1 = y + 1 1 = z - 1 1
C. x - 2 1 = y + 1 - 5 = z 2
D. x + 2 1 = y - 1 - 5 = z 2
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d tương ứng có phương trình là 2 x - y + 3 z - 3 = 0 và x + 1 - 2 = y - 2 1 = z + 2 - 1 . Biết đường thẳng d cắt mặt phẳng (P) tại điểm M. Gọi N là điểm thuộc d sao cho M N = 3 , gọi K là hình chiếu vuông góc của điểm N trên mặt phẳng (P). Tính độ dài đoạn MK.
A. M K = 7 105
B. M K = 7 4 21
C. M K = 4 21 7
D. M K = 105 7
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 v à d 2 lần lượt có phương trình là x − 1 1 = y − 2 3 = z − 3 − 1 , x − 2 − 2 = y + 2 1 = z − 1 3 . Tìm tọa độ giao điểm M của d 1 và d.
A. M = (0;–1;4)
B. M = (0;1;4)
C. M = (–3;2;0)
D. M = (3;0;5)
Trong không gian với hệ tọa độ oxyz, cho mặt phẳng P : x + y + z - 3 = 0 và đường thẳng d : x - 2 1 = y + 1 - 2 = z - 1 . Gọi I là giao điểm của mặt phẳng (P) với đường thẳng d. Điểm M thuộc mặt phẳng (P) có hoành độ dương sao cho IM vuông góc với d và I M = 4 14 có tọa độ là:
A. M(5;9;-11)
B. M(-3;-7;13)
C. M(5;9;11)
D. M(3;-7;13)
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-1;-2;2), B(-3;-2;0) và mặt phẳng (P):x+3y-z+2=0. Vectơ chỉ phương của đường thẳng d là giao tuyến của mặt phẳng (P) và mặt phẳng trung trực của đoạn AB có tọa độ là
A. u → = 1 ; - 1 ; 0
B. u → = 2 ; 3 ; - 1
C. u → = 1 ; - 2 ; 0
D. u → = 3 ; - 2 ; - 3