Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 4 ) 2 = 10 và mặt phẳng ( P ) : - 2 x + y + 5 z + 9 = 0 . Gọi (Q) là tiếp diện của (S) tại M(5;0;4). Tính góc giữa (P),(Q)
A. 60 °
B. 120 °
C. 30 °
D. 45 °
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 4 ) 2 = 10 và mặt phẳng ( P ) : - 2 x + y + 5 z + 9 = 0 . Gọi mặt phẳng (Q) là tiếp diện của (S) tại .
Góc giữa mặt phẳng (P) và (Q).
A. 30°.
B. 45°.
C. 60°.
D. 90°.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x - 2y + z + 3 = 0. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:
A. a + b + c = 8.
B. a + b + c = 5.
C. a + b + c = 6.
D. a + b + c = 7.
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A ( a ; 0 ; 0 ) , B ( 0 ; b ; 0 ) , C ( 0 ; 0 ; c ) , trong đó a > 0 , b > 0 , c > 0 và 3 a + 1 b + 3 c = 5 . Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S) có phương trình là ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 3 ) 2 = 304 25 , khi đó thể tích của khối tứ diện OABC nằm trong khoảng nào?
A . ( 0 ; 1 2 ) .
B. (0;1).
C. (1;3).
D. (4;5).
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : 2 x − 2 y − z − 9 = 0 và mặt cầu ( S ) : ( x − 3 ) 2 + ( y + 2 ) 2 + ( z − 1 ) 2 = 100 . Biết (P) cắt (S) theo giao tuyến là một đường tròn. Tìm tọa độ tâm của đường tròn giao tuyến.
A. (3;2;-1)
B. (-3;2;-1)
C. (3;-2;1)
D. (-3;2;1)
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a,b,c>0. Biết rằng (ABC) đi qua điểm M 1 7 ; 2 7 ; 3 7 và tiếp xúc với mặt cầu (S): x - 1 2 + ( y - 2 ) 2 + z - 3 2 = 72 7 . Tính 1 a 2 + 1 b 2 + 1 c 2
A. 7 2
B. 1 7
C. 14
D. 7
Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng (P): 2x+2y-z+16=0 và mặt cầu (s): (x-2)2 + (y+1)2 + (z-3)2=9. Điểm M di động trên trên (S) và điểm N di động trên (P) sao cho độ dài đoạn thẳng MN ngắn nhất. Tọa độ điểm M là
A. M(0;1;-1)
B. M(0;-3;4)
C. M(2;0;1)
D. M(-2;2;-3)
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 1 ) 2 + y 2 + ( z - 2 ) 2 = 9 . Mặt phẳng tiếp xúc với mặt cầu (S) tại điểm A ( 1 ; 3 ; 2 ) có phương trình là
A . x + y - 4 = 0
B . y - 3 = 0
C . 3 y - 1 = 0
D . x - 1 = 0
Trong không gian tọa độ Oxyz, cho mặt cầu (S) có phương trình (x-2)2 + (y+1)2 + (z-3)2 = 20. Mặt phẳng có phương trình x-2y+2z-1=0 và đường thẳng ∆ có phương trình x 1 = y + 2 2 = z + 4 - 30 . Viết phương trình đường thẳng ∆ ' nằm trong mặt phẳng α vuông góc với ∆ đồng thời cắt (S) theo một dây cung có độ dài lớn nhất.