Trong không gian với hệ toạ độ oxyz, cho hai mặt phẳng (P) : x+2y+z+1 = 0(Q): 2x-y+2z+4 = 0 Gọi M là điểm thuộc mặt phẳng (P) sao cho điểm đối xứng của M qua mặt phẳng (Q) nằm trên trục hoành. Tung độ của M bằng
A. 4
B. 2
C. -3
D. -5
Trong không gian với hệ trục tọa độ Oxyz cho điểm A(2;0;-1) , mặt phẳng (P): 2x+y-z-2=0 và mặt phẳng (Q): x-3y-4=0. Gọi M là một điểm nằm trên (P) và N là điểm nằm trên (Q) sao cho A là trung điểm của MN. Khi M chạy trên mặt phẳng (P) thì quỹ tích điểm N là đường thẳng d có phương trình tương ứng là
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( P ) : x + y – z – 4 = 0 và điểm M (1;–2;-2). Tọa độ điểm N đối xứng với điểm M qua mặt phẳng (P) là
A. N (3;4;8)
B. N (3;0;–4)
C. N (3;0;8)
D. N (3;4;–4)
Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d có phương trình x − 1 1 = y + 1 2 = z − 2 − 1 và mặt phẳng P : x + 2 y − 2 z + 4 = 0 . Tìm tọa độ điểm M trên d có tung độ dương sao cho khoảng cách từ M đến (P) bằng 2.
A. M 3 ; 3 ; 0
B. M 2 ; 1 ; 1
C. M 0 ; - 3 ; 3
D. M 1 ; - 1 ; 2
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng P : x - y + z + 3 = 0 , Q : x + 2 y - 2 z - 5 = 0 và mặt cầu S : x 2 + y 2 + z 2 - 2 z + 4 y - 6 z - 11 = 0 . Gọi M là điểm di động trên (P) sao cho MN luôn vuông góc với (Q). Giá trị lớn nhất của độ dài đoạn thẳng MN bằng
A. 9 + 5 3
B. 28
C. 14
D. 3 + 5 3
Trong không gian với hệ tọa độ oxyz, cho mặt phẳng P : x + y + z - 3 = 0 và đường thẳng d : x - 2 1 = y + 1 - 2 = z - 1 . Gọi I là giao điểm của mặt phẳng (P) với đường thẳng d. Điểm M thuộc mặt phẳng (P) có hoành độ dương sao cho IM vuông góc với d và I M = 4 14 có tọa độ là:
A. M(5;9;-11)
B. M(-3;-7;13)
C. M(5;9;11)
D. M(3;-7;13)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + y - z - 1 = 0 và điểm A 1 ; 0 ; 0 ∈ P . Đường thẳng ∆ đi qua A nằm trong mặt phẳng (P) và tạo với trục Oz một góc nhỏ nhất. Gọi M x 0 ; y 0 ; z 0 là giao điểm của đường thẳng ∆ với mặt phẳng Q : 2 x + y - 2 z + 1 = 0 . Tổng S = x 0 + y 0 + z 0 bằng
A. -5
B. 12
C. -2
D. 13
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x + 2y + 2z + 1 = 0 và đường thẳng d : x - 1 2 = y - 1 2 = z 1 . Gọi I là giao điểm của d và (P), điểm M là điểm trên đường thẳng d sao cho IM = 9, tính khoảng cách từ điểm M đến mặt phẳng (P).
A. d M ; P = 8
B. d M ; P = 2 2
C. d M ; P = 4
D. d M ; P = 3 2
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;-3) và mặt phẳng (P): 2x+2y-z+0=0. Đường thẳng d đi qua A và vuông góc với mặt phẳng (Q): 3x+4y-4z+5=0 cắt mặt phẳng (P) tại B. Điểm M nằm trong mặt phẳng (P) sao cho M luôn nhìn AB dưới góc vuông và độ dài MB lớn nhất. Tính độ dài MB.
A. M B = 41 2
B. M B = 5 2
C. M B = 5
D. M B = 41