Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x-y+z-1=0 và (Q):2x+y+1=0. Viết phương trình mặt phẳng đi qua A(1;-1;-2) vuông góc với hai mặt phẳng (P) và (Q).
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): x + 2 y - z - 1 = 0 , (Q): 3x-(m+2)y+(2m-1)z+3=0. Tìm m để hai mặt phẳng (P), (Q) vuông góc với nhau.
Trong không gian với hệ tọa độ Oxyz, cho A ( 1 ; - 1 ; 2 ) ; B ( 2 ; 1 ; 1 ) và mặt phẳng ( P ) : x + y + z + 1 = 0 . Mặt phẳng ( Q ) chứa A , B và vuông góc với mặt phẳng ( P ) . Mặt phẳng ( Q ) có phương trình là:
A. 3 x - 2 y - z - 3 = 0
B. x + y + z - 2 = 0
C. - x + y = 0
D. 3 x - 2 y - z + 3 = 0
Trong không gian với hệ tọa độ Oxyz cho A(1;-1;2), B(2;1;1) và mặt phẳng (P): x+y+z+1=0. Mặt phẳng (Q) chứa A, B và vuông góc với mặt phẳng . Mặt phẳng (Q) có phương trình là:
A. -x+y=0
B. 3x-2y-z+3=0
C. x+y+z-2=0
D. 3x-2y-z-3=0
Trong không gian hệ tọa độ Oxyz, cho đường thẳng Δ là giao tuyến của hai mặt phẳng (P): z-1= 0 và (Q): x+y+z-3 =0. Gọi d là đường thẳng nằm trong mặt phẳng (P), cắt đường thẳng: \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) và vuông góc với đường thẳng Δ. Phương trình đường thẳng d là?
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x+y+z-3=0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Gọi ∆ là hình chiếu vuông góc của d trên α và u → = ( 1 ; a ; b ) là một vectơ chỉ phương của ∆ với a, b ∈ ℤ . Tính tổng a+b.
A. 0
B. 1
C. -1
D. -2
Trong không gian với hệ tọa độ Oxyz,
cho hai mặt phẳng:
(P): x + y + z - 2 = 0
(Q): x + 2y - z +3 = 0
và điểm A(1;0;4). Phương trình đường thẳng qua A và cùng song song với (P)
và (Q).
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-y-z-1=0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 cho A(1;1;-2) Đường thẳng đi qua A, song song với (P) và vuông góc với d có phương trình là
Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;1;2), mặt phẳng (α): x-y+z-4=0 và mặt cầu (S): (x-3)²+ (y-1)²+ (z-2)²=16. Gọi (P) là mặt phẳng đi qua A, vuông góc với (α) và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x'Ox là:
A . M - 1 2 ; 0 ; 0
B . M - 1 3 ; 0 ; 0
C . M 1 ; 0 ; 0
D . M 1 3 ; 0 ; 0