Chọn D.
Ta có (P) qua O(0;0;0) và nhận BA → = ( 1 ; 3 ; - 5 ) là một VTPT
⇒ ( P ) : x + 3 y - 5 z = 0 .
Chọn D.
Ta có (P) qua O(0;0;0) và nhận BA → = ( 1 ; 3 ; - 5 ) là một VTPT
⇒ ( P ) : x + 3 y - 5 z = 0 .
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm A(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x+y+3z=0, (R): 2x-y+z=0 là
A. 4x + 5y – 3z + 22 = 0.
B. 4x – 5y – 3z -12 =0
C. 2x + y – 3z – 14 = 0.
D. 4x + 5y – 3z – 22 = 0
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-1;1), mặt phẳng (P): x–2y+z-1=0 và đường thẳng d: x 1 = y - 2 2 = z + 1 - 1 . Viết phương trình đường thẳng đi qua A, song song với mặt phẳng (P) cắt đường thẳng d.
A. x - 1 1 = y + 1 1 = z - 1 1
B. x - 1 15 = y + 1 7 = z - 1 1
C. x - 1 4 = y + 1 1 = z - 1 - 2
D. x - 1 13 = y + 1 6 = z - 1 - 1
Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng d đi qua điểm A ( 1 ; 2 ; 1 ) và vuông góc với mặt phẳng ( P ) : x − 2 y + z − 1 = 0 có dạng
A. d : x + 1 1 = y + 2 − 2 = z + 1 1 .
B. d : x + 2 1 = y − 2 = z + 2 1 .
C. d : x − 1 1 = y − 2 2 = z − 1 1 .
D. d : x − 2 2 = y − 4 = z − 2 2 .
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): x+y+z-2=0, (Q): x+2y-z+3=0 và điểm A(1;0;4). Phương trình đường thẳng qua A và cùng song song với (P) và (Q) là:
A. d : x - 1 - 3 = y 2 = z - 4 1
B. d : x - 1 3 = y 1 = z - 4 1
C. d : x - 1 - 3 = y - 1 = z - 4 1
D. d : x - 1 - 3 = y 2 = z - 4 - 1
Trong không gian với hệ tọa độ Oxyz, đường thẳng đi qua điểm A 3 ; - 1 ; 2 và vuông góc với mặt phẳng P : x + y - 3 z - 5 = 0 có phương trình là
A. d : x - 1 3 = y - 1 - 1 = z + 3 2
B. d : x + 3 1 = y - 1 1 = z + 2 - 3
C. d : x - 3 1 = y + 1 1 = z - 2 - 3
D. d : x + 1 3 = y + 1 - 1 = z - 3 2
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;4;1), B(-1;1;3) và mặt phẳng (P):x - 3y + 2z - 5 = 0. Viết phương trình mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P).
A. Q : 2 y + 3 z - 1 = 0
B. Q : 2 x + 3 z - 12 = 0
C. Q : 2 x + 3 z - 11 = 0
D. Q : 2 y + 3 z - 11 = 0
Trong không gian với hệ trục tọa độ Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng Q : x + y + 3 z = 0 , R : 2 x - y + z = 0 là
A. 4 x + 5 y - 3 z + 22 = 0 .
B. 4 x - 5 y - 3 z - 12 = 0 .
C. 2 x + y - 3 z - 14 = 0 .
D. 4 x + 5 y - 3 z - 22 = 0 .
Trong không gian với hệ tọa độ Oxyz, phương trình của đường thẳng đi qua điểm M 2 ; − 1 ; 1 và vuông góc với hai đường thẳng d 1 : x 1 = y + 1 − 1 = z − 2 & d 2 : x = t y = 1 − 2 t z = 0 ( t ∈ ℝ ) là
A. x − 2 4 = y + 1 − 2 = z − 1 1 .
B. x + 2 4 = y + 3 2 = z 1 .
C. x − 2 3 = y + 1 2 = z − 1 − 1 .
D. x − 2 1 = y + 1 − 2 = z − 1 1 .
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 1 ; 0 ; 1 ; B 2 ; 1 ; 2 và mặt phẳng P : x + 2 y + 3 z + 3 = 0 . Phương trình mặt phẳng α đi qua hai điểm A, B và vuông góc với mặt phẳng (P) là:
A. x + 2y - z + 6 = 0
B. x + 2y - 3z + 6 = 0
C. x - 2y + z - 2 = 0
D. x + 2y - 3z + 6 = 0