Đáp án B
1 2 A B → =(1;2;-1) là vectơ pháp tuyến của mặt phẳng trung trực của AB. I(2;1;0) là trung điểm của AB, khi đó phương trình mặt phẳng trung trực của đoạn AB là x-2+2(y-1)-z=0
<=> x+2y-z-4=0
Đáp án B
1 2 A B → =(1;2;-1) là vectơ pháp tuyến của mặt phẳng trung trực của AB. I(2;1;0) là trung điểm của AB, khi đó phương trình mặt phẳng trung trực của đoạn AB là x-2+2(y-1)-z=0
<=> x+2y-z-4=0
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-1;1) mặt phẳng (P):x-2y+z-1=0 và đường thẳng d : x 1 = y - 2 2 = z - 1 - 1 . Viết phương trình đường thẳng đi qua A, song song với mặt phẳng (P) cắt đường thẳng d.
Trong không gian với hệ tọa độ Oxyz,
cho hai mặt phẳng:
(P): x + y + z - 2 = 0
(Q): x + 2y - z +3 = 0
và điểm A(1;0;4). Phương trình đường thẳng qua A và cùng song song với (P)
và (Q).
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt cầu (S) có tâm nằm trên đường thẳng d : x 1 = y - 1 1 = z - 2 1 và tiếp xúc với hai mặt phẳng (P): 2x - z - 4 = 0, (Q): x – 2y – 2 = 0
A . S : x - 1 2 + y - 2 2 + z - 3 2 = 5
B . S : x - 1 2 + y - 2 2 + z - 3 2 = 5
C . S : x + 1 2 + y + 2 2 + z + 3 2 = 5
D . S : x - 1 2 + y - 2 2 + z - 3 2 = 3
Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng d đi qua điểm A(1;2;1) và vuông góc với mặt phẳng (P): x-2y+z-1=0 có dạng
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P : x + 2 y + z - 4 = 0 và đường thẳng d : x + 1 2 = y 1 = z + 2 3 .Viết phương trình đường thẳng ∆ nằm trong mặt phẳng P đồng thời cắt và vuông góc với đường thẳng d.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 2 = y - 3 1 = z - 2 1 và hai mặt phẳng
(P): x-2y+2z=0. (Q): x-2y+3z-5=0. Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).
Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) đi qua hai điểm A(0;1;0), B(2;3;1) và vuông góc với mặt phẳng (Q):x+2y-z=0 có phương trình là
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x + 2 1 = y - 2 1 = z - 1 và mặt phẳng ( P ) : x + 2 y – 3 z + 4 = 0 . Phương trình tham số của đường thẳng d nằm trong (P), cắt và vuông góc đường thẳng ∆ là:
A. x = 1 - 3 t y = - 2 + 3 t z = - 1 + t
B. x = - 3 + 2 t y = 1 - t z = 1 + t
C. x = - 3 - 3 t y = 1 + 2 t z = 1 + t
D. x = - 3 + t y = 1 - 2 t z = 1 - t
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + 2y + z – 4 = 0 và đường thẳng d : x + 1 2 = y 1 = z + 2 3 Viết phương trình đường thẳng Δ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d.
Trong không gian với hệ tọa độ Oxyz cho đường thẳng ∆ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng (P): x+2y+2z-4=0. Phương trình đường thẳng d nằm trong (P) sao cho d cắt và vuông góc với đường thẳng ∆ là