Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)²+y²+ (z+2)²=4 và đường thẳng d : x = 2 - y y = t z = m - 1 + t . Gọi T là tập tất cả các giá trị của m để d cắt (S) tại hai điểm phân biệt A, B sao cho các tiếp diện của (S) tại A và B tạo với nhau góc lớn nhất có thể. Tính tổng các phần tử của tập hợp T.
A. 3
B. -3
C. -5.
D. -4.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S ) : x 2 + y + 2 2 + z 2 = 5 . Tìm tất cả các giá trị thực của tham số m để đường thẳng ∆ : x - 1 2 = y + m 1 = z - 2 m - 3 cắt (S) tại hai điểm phân biệt A, B sao cho A, B có độ dài AB lớn nhất.
A. m = - 1 2
B. m = ± 1 3
C. m = 1 2
D. m = 0
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x - 1 ) 2 + y 2 + ( z + 2 ) 2 = 4 và đường thẳng d : x = 2 - t y = t z = m - 1 - t Tổng các giá trị thực của tham số m để d cắt (S) tại hai điểm phân biệt A,B và các tiếp diện của (S) tại A,B tạo với nhau một góc lớn nhất bằng
A. -1,5
B. 3
C. -1
D. -2,25
Trong không gian với hệ tọa độ O x y z , cho các điểm A ( 1 ; 0 ; 0 ) , B ( 3 ; 2 ; 0 ) , C ( - 1 ; 2 ; 4 ) . Gọi M là điểm thay đổi sao cho đường thẳng M A , M B , M C hợp với mặt phẳng ( A B C ) các góc bằng nhau; N là điểm thay đổi nằm trên mặt cầu ( S ) : ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 1 2 . Tính giá trị nhỏ nhất của độ dài đoạn M N
A. 3 2 2
B. 2
C. 2 2
D. 6
Trong không gian với hệ tọa độ Oxyz, cho các điểm M (2;2; -3) và N (-4; 2; 1). Gọi Δ là đường thẳng đi qua M, nhận vecto làm vectơ chỉ phương và song song với mặt phẳng (P): 2x+y+z=0 sao cho khoảng cách từ N đến Δ đạt giá trị nhỏ nhất. Biết |a|, |b| là hai số nguyên tố cùng nhau. Khi đó |a| + |b| + |c| bằng:
A. 15
B. 13
C. 16
D. 14
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : x - 1 2 = y 1 = z 3 , d 2 : x = 1 + t y = 2 + t z = m . Gọi S là tập hợp tất cả các số m sao cho đường thẳng d 1 và d 2 chéo nhau và khoảng cách giữa chúng bằng 5 19 . Tính tổng các phần tử của S.
A. 11
B. -12
C. 12
D. -11
Trong không gian với hệ trục tọa độ Oxyz, cho A(1;2;3), B(3;4;4). Tìm tất cả các giá trị của tham số m sao cho khoảng cách từ điểm A đến mặt phẳng 2 x + y + m z - 1 = 0 bằng độ dài đoạn thẳng AB.
A. m = 2
B. m = -2
C. m = -3
D. m = ± 2
Trong không gian với hệ trục tọa độ Oxyz, cho A(1;2;3), B(3;4;4). Tìm tất cả các giá trị của tham số m sao cho khoảng cách từ điểm A đến mặt phẳng 2x+y+mz-1=0 bằng độ dài đoạn thẳng AB.
A. m = 2
B. m = -2
C. m = -3
D. m = ± 2
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;-2;3), B(1;0;5) và đường thẳng d : x - 1 1 = y - 2 - 2 = z - 3 2 . Tìm tọa độ điểm M trên đường thẳng (d) để M A 2 + M B 2 đạt giá trị nhỏ nhất.
A. M(2;0;5)
B. M(1;2;3)
C. M(3;-2;7)
D. M(3;0;4)