Đáp án D
Phương pháp: AB lớn nhất
Cách giải: Mặt cầu (S) có tâm I(0;-2;0) và bán kính R = 5
Ta có
Để AB lớn nhất
Đáp án D
Phương pháp: AB lớn nhất
Cách giải: Mặt cầu (S) có tâm I(0;-2;0) và bán kính R = 5
Ta có
Để AB lớn nhất
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x + 3 ) 2 + y 2 + ( z - 2 ) 2 = m 2 + 4 . Tìm tất cả các giá trị thực của tham số m để mặt cầu (S) tiếp xúc với mặt phẳng (Oyz).
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)²+y²+ (z+2)²=4 và đường thẳng d : x = 2 - y y = t z = m - 1 + t . Gọi T là tập tất cả các giá trị của m để d cắt (S) tại hai điểm phân biệt A, B sao cho các tiếp diện của (S) tại A và B tạo với nhau góc lớn nhất có thể. Tính tổng các phần tử của tập hợp T.
A. 3
B. -3
C. -5.
D. -4.
Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d 1 : x + 1 2 = 1 - y - m = 2 - z - 3 và d 2 : x - 3 1 = y 1 = z - 1 1 . Tìm tất cả các giá trị thực của m để d 1 ⊥ d 2 được:
A. -1
B. 1
C. -5
D. 5
Trong không gian Oxyz, cho mặt cầu (S): ( x - 2 ) 2 + ( y + 1 ) 2 + ( z + 2 ) 2 = 4 và mặt phẳng (P): 4x-3y-m=0. Tìm tất cả các giá trị thực của tham số m để mặt phẳng (P) và mặt cầu (S) có đúng 1 điểm chung
A. m=1
B. m=-1 hoặc m=-21
C. m=1 hoặc m=21
D. m=-9 hoặc m=31
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x - 1 ) 2 + y 2 + ( z + 2 ) 2 = 4 và đường thẳng d : x = 2 - t y = t z = m - 1 - t Tổng các giá trị thực của tham số m để d cắt (S) tại hai điểm phân biệt A,B và các tiếp diện của (S) tại A,B tạo với nhau một góc lớn nhất bằng
A. -1,5
B. 3
C. -1
D. -2,25
Trong không gian tọa độ Oxyz, cho mặt cầu (s): x - 1 2 + y 2 + ( z + 2 ) 2 = 2 và α : x + y - 4z + m = 0. Tìm các giá trị của m để tiếp xúc với (S).
Trong không gian Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + y 2 + ( z + 2 ) 2 = 4 và đường thẳng d : x = 2 - t y = t z = m - 1 + t Tổng các giá trị thực của m để d cắt (S) tại hai điểm phân biệt A, B và A B = 2 2 bằng
A. -5
B. 3
C. -3
D. -4
Trong không gian Oxyz, cho mặt cầu: (S): x - 2 2 + y + 1 2 + z + 2 2 = 4 và mặt phẳng (P): 4x-3y -m =0 Tìm tất cả các giá trị thực của tham số m để mặt phẳng (P) và mặt cầu (S) có đúng 1 điểm chung.
A. m=1
B. m=-1 hoặc m=-21
C. m=1 hoặc m=21
D. m=-9 hoặc m=31
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 và đường thẳng ∆ : x - 6 - 3 = y - 2 2 = z - 2 2 . Phương trình mặt phẳng (P) đi qua điểm M (4;3;4) song song với đường thẳng ∆ và tiếp xúc với mặt cầu (S) là:
A.x-2y+2z-1=0.
B.2x+2y+z-18=0.
C.2x-y-2z-10=0.
D.2x+y+2z-19=0.