Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x + 1 - 2 = y - 1 = z - 2 1 và hai điểm M - 1 ; 3 ; 1 , N 0 ; 2 ; - 1 . Điểm P a ; b ; c thuộc d sao cho tam giác MNP cân tại P. Khi đó 3 a + b + c bằng
A. - 2 3
B. 1
C. 2
D. 3
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 - 2 = y - 1 = z - 2 1 và hai điểm A(-1;3;1),B(0;2;-1). Tìm tọa độ điểm C thuộc d sao cho diện tích của tam giác ABC nhỏ nhất.
A . C ( - 1 ; 0 ; 2 )
B . C ( 1 ; 1 ; 1 )
C . C ( - 3 ; - 1 ; 3 )
D . C ( - 5 ; - 2 ; 4 )
Trong không gian Oxyz, cho đường thẳng d : x + 1 2 = y 1 = z - 2 - 1 và hai điểm A - 1 ; 3 ; 1 ' B 0 , 2 , - 1 . Gọi C(m;n;p) là điểm thuộc d sao cho diện tích của tam giác ABC bằng 2 2 . Giá trị của tổng m + n + p bằng
A. - 1
B. 2
C. 3
D. - 5
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;-3;2), B(3;3;0) và đường thẳng d : x - 2 2 = - y 2 = z - 1 2 Lấy điểm M thuộc đường thẳng (d) sao cho chu vi tam giác MAB đạt giá trị nhỏ nhất. Tọa độ điểm M(a;b;c). Tính a + b + c
A. 0
B. 5
C. 3
D. 2
Trong không gian Oxyz, cho đường thẳng d : x + 1 2 = y 1 = z - 2 - 1 và hai điểm A - 1 ; 3 ; 1 , B 0 ; 2 ; - 1 . Gọi C m , n , p là điểm thuộc d sao cho diện tích của tam giác ABC bằng 2 2 . Giá trị của tổng m+n+p bằng
A. -1
B. 2
C. 3
D. -5
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng P : x + 3 y - 2 z + 2 = 0 và đường thẳng d : x - 1 2 = y + 1 - 1 = z - 4 1 . Đường thẳng qua A(1;2;-1) và cắt (P), d lần lượt tại B, C a ; b ; c sao cho C là trung điểm của AB. Tổng a + b + c bằng
A. -15
B. -12
C. -5
D. 11
Trong hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y - 3 - 1 = z - 1 1 cắt mặt phẳng P : 2 x - 3 y + z - 2 = 0 tại điểm I(a;b;c). Khi đó a + b + c bằng
A. 9
B. 5
C. 3
D. 7
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;1;0), B(2;2;2), C(-2;3;1) và đường thẳng d : x - 1 2 = y + 2 - 1 = z - 3 2 . Tìm điểm M thuộc d để thể tích V của tứ diện MABC bằng 3.
A. M 1 - 15 2 ; 9 4 ; - 11 2 , M 2 - 3 2 ; - 3 4 ; 1 2
B. M 1 - 3 5 ; - 3 4 ; 1 2 , M 2 - 15 2 ; 9 4 ; 11 2
C. M 1 3 2 ; - 3 4 ; 1 2 , M 2 15 2 ; 9 4 ; 11 2
D. M 1 3 5 ; - 3 4 ; 1 2 , M 2 15 2 ; 9 4 ; 11 2
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A (1;-1;2) và đường thẳng d : x 1 = y 2 = z + 2 - 2 . Mặt cầu (S) tâm A cắt đường thẳng d tại 2 điểm phân biệt B, C sao cho diện tích tam giác ABC bằng 12. Phương trình mặt cầu (S) là:
A. S : x - 1 2 + y + 1 2 + z - 2 2 = 36
B. S : x - 1 2 + y + 1 2 + z - 2 2 = 25
C. S : x - 1 2 + y + 1 2 + z - 2 2 = 144
D. S : x - 1 2 + y + 1 2 + z - 2 2 = 64