Đáp án A
Xét yếu tố vuông góc nhập
hoành độ, tung độ, cao độ của các đáp án.
Ta thấy chỉ có đáp án (4; -1; 3) cho kết quả
bằng 0.
Đáp án A
Xét yếu tố vuông góc nhập
hoành độ, tung độ, cao độ của các đáp án.
Ta thấy chỉ có đáp án (4; -1; 3) cho kết quả
bằng 0.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình lần lượt d: x = 1+2t, y = 2 - t, z = 3t . Tìm tọa độ điểm K đối xứng với điểm I(2;-1;3) qua đường thẳng d
A. K(4;3;3)
B. K(1;-3;3)
C. K(-4;-3;-3)
D. K(-1;3;-3)
Trong không gian với hệ tọa độ Oxyz, cho điểm A(-4;1;3) và đường thẳng d : x + 1 - 2 = y - 1 1 = z + 3 3 . B là điểm có tọa độ nguyên trên d sao cho A B = 5 . Tìm tọa độ điểm B.
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d: x = 1 - t y = 2 t z = 2 + 2 t , t ∈ ℝ và mặt phẳng (P): x + y -z -1 = 0 Giao điểm M của d và (P) có tọa độ là
A. M(1;0;2)
B. M(3;−4;−2)
C. M(0;2;4)
D. M(1;1;1)
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;-2;3), B(1;0;5) và đường thẳng d : x - 1 1 = y - 2 - 2 = z - 3 2 . Tìm tọa độ điểm M trên đường thẳng (d) để M A 2 + M B 2 đạt giá trị nhỏ nhất.
A. M(2;0;5)
B. M(1;2;3)
C. M(3;-2;7)
D. M(3;0;4)
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng ∆ 1 : x + 1 3 = y - 2 1 = z - 1 2 v à ∆ 2 : x - 1 1 = y 2 = z + 1 3 . Phương trình đường thẳng song song với d : x = 3 y = - 1 + t z = 4 + t và cắt hai đường thẳng ∆1;∆2 là:
A. x = 2 y = 3 - t z = 3 - t
B. x = - 2 y = - 3 - t z = - 3 - t
C. x = - 2 y = - 3 + t z = - 3 + t
D. x = 2 y = - 3 + t z = 3 + t
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(-1;1;2), B(0;1;1), C(1;0;4) và đường thẳng d : x = - t y = 2 + t z = 3 - t . Tọa độ giao điểm của mặt phẳng (ABC) và đường thẳng d là
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình x - 1 3 = y + 2 2 = z - 3 - 4 . Điểm nào sau đây không thuộc đường thẳng d?
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x=1-2t ; y=1+t; z=t+2 (t ∈ R). Tìm một véc-tơ chỉ phương của đường thẳng d.
A. (-2;1;2)
B. (-2;1;1)
C. (1;1;1)
D. (2;-1;-2).
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng ∆ 1 : x + 1 3 = y - 2 1 = z - 1 2 và ∆ 2 : x - 1 1 = y 2 = z + 1 3 . Phương trình đường thẳng ∆ song song với d : x = 3 y = - 1 + t z = 4 + t và cắt hai đường thẳng Δ1; Δ2 là:
A. x = 2 y = 3 - t z = 3 - t
B. x = - 2 y = - 3 - t z = - 3 - t
C. x = - 2 y = - 3 + t z = - 3 + t
D. x = 2 y = - 3 + t z = 3 + t