Để bốn điểm A, B, C, D đồng phẳng khi
Chọn C.
Để bốn điểm A, B, C, D đồng phẳng khi
Chọn C.
Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A 1 ; - 2 ; 0 , B 1 ; 0 ; - 1 , C 0 ; - 1 ; 2 và D 0 ; m ; p . Hệ thức giữa m và p để bốn điểm A, B, C, D đồng phẳng là
A. 2 m + p = 0
B. m + p = 1
C. m + 2 p = 3
D. 2 m - 3 p = 0
Trong không gian với hệ tọa độ Oxyz, mặt phẳng ( P ) : a x + b y + c z + d = 0 , a 2 + b 2 + c 2 > 0 đi qua điểm B(1;0;2) , C(-1;-1;0) và cách A(2;5;3) một khoảng lớn nhất. Khi đó giá trị của biểu thức M = a + c b + d là
A. M = 1
B. M = 3 4
C. M = - 2 7
D. M = - 3 2
Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1;2;1), B(-2;1;3), C(2;-1;3), D(0;3;1). Mặt phẳng (P):ax+by+cz-10=0 đi qua hai điểm A, B và cách đều hai điểm C, D và hai điểm C, D nằm khác phía so với mặt phẳng (P). Tính S=a+b+c.
A. S=7.
B. S=15.
C. S=6.
D. S=13.
Trong không gian với hệ tọa độ Oxyz, cho ba vec tơ a → ( 1 ; m ; 2 ) ; b → m + 1 ; 2 ; 1 ; c → 0 ; m - 2 ; 2 . Giá trị của m để a → , b → , c → đồng phẳng là:
A. 2 5
B. - 2 5
C. 1 5
D. 1
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0; 0; 2), B(3; 0; 5), C(1; 1; 0). Tọa độ của điểm D sao cho ABCD là hình bình hành là
A. D(4; 1; 3)
B. D(-4; -1; -3)
C. D(2; 1; -3)
D. D(-2; 1; -3)
Trong không gian với hệ tọa độ Oxyz, cho điểm A 2 ; 1 ; 3 và mặt phẳng P : x + m y + 2 m + 1 z − 2 + m = 0 , với m là tham số. Gọi điểm H a ; b ; c là hình chiếu vuông góc của điểm A trên P . Tính a + b khi khoảng cách từ điểm A đến P lớn nhất.
A. a + b = − 1 2
B. a + b = 2
C. a + b = 0
D. a + b = 3 2
Trong không gian với hệ tọa độ Oxyz, cho 3 vectơ a → = 1 ; m ; 2 , b → = m + 1 ; 2 ; 1 , c → = 0 ; m − 2 ; 2 . Điều kiện của m để 3 vectơ đã cho đồng phẳng là
A. m = 0
B. m = 2 5 m = 1
C. m = 1
D. m = 2 5
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(0;1;2), B(2;-2;1), C(-2;0;1) và mặt phẳng ( P ) : 2 x + 2 y + z - 3 = 0 . Tọa độ điểm M thuộc mặt phẳng (P) sao cho M cách đều ba điểm A, B, C là
A. M(-7;3;2)
B. M(2;3;-7)
C. M(3;2;-7)
D. M(3;-7;2)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + y + z - 1 = 0 và hai điểm A ( 1;-3;0 ), B ( 5;-1;-2 ). Điểm m ( a;b;c ) trên mặt phẳng (P) sao cho M A - M B đạt giá trị lớn nhất. Tính tổng a + b + c
A. 1
B. 11
C. 5
D. 6