Trong không gian với hệ tọa độ Oxyz, cho vectơ u → = 2 ; - 1 ; 2 và vectơ v → có độ dài bằng 1 thỏa mãn u → - v → = 4 . Độ dài của vectơ u → + v → bằng
A. 4
B. 3
C. 2
D. 1
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-1;2;1), B(1;2;-3) và đường thẳng d : x + 1 2 = y - 5 2 = z - 1 . Tìm vectơ chỉ phương u → của đường thẳng △ đi qua A và vuông góc với d đồng thời cách B một khoảng lớn nhất
A. u → = 4 ; - 3 ; 2
B. u → = 2 ; 0 ; - 4
C. u → = 2 ; 2 ; - 1
D. u → = 1 ; 0 ; 2
Trong không gian với hệ tọa độ Oxyz, cho vectơ a → = ( 2 ; - 2 ; - 4 ) , b → = ( 1 ; - 1 ; 1 ) Mệnh đề nào dưới đây sai?
A. a → + b → = ( 3 ; - 3 ; - 3 )
B. a → ⊥ b →
C. b → = 3
D. a → và b → cùng phương
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-1;2;1), B(1;2;-3) và đường thẳng d : x + 1 2 = y − 5 2 = z − 1 . Tìm vectơ chỉ phương u → của đường thẳng Δ đi qua A và vuông góc với d đồng thời cách B một khoảng lớn nhất.
A. u → = 4 ; − 3 ; 2 .
B. u → = 2 ; 0 ; − 4 .
C. u → = 2 ; 2 ; − 1 .
D. u → = 1 ; 0 ; 2 .
Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(-2;-2;1),A(1;2;-3) và đường thẳng d : x + 1 2 = y - 5 2 = z - 1 . Tìm một vectơ chỉ phương u → của đường thẳng ∆ đi qua M, vuông góc với đường thẳng d đồng thời cách điểm A một khoảng bé nhất.
A. u → = 2 ; 2 ; - 1
B. u → = 1 ; 7 ; - 1
C. u → = 1 ; 0 ; 2
D. u → = 3 ; 4 ; - 4
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm M(-2;-2;1), A(1;2;-3) và đường thẳng d : x + 1 2 = y - 5 2 = z - 1 . Tìm vectơ chỉ phương u → của dường thẳng D đi qua M, vuông góc với đường thẳng d, đồng thời cách điểm A một khoảng lớn nhất
A. u → = 4 ; - 5 ; - 2
B. u → = 1 ; 0 ; 2
C. u → = 8 ; - 7 ; 2
D. u → = 1 ; 1 ; - 4
Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ u → = 1 ; 1 ; 2 , a → = 3 ; - 1 ; - 2 và v → = - 1 ; m ; m - 2 . Để vectơ u → , v → vuông góc với a → thì giá trị m bằng bao nhiêu?
A. m = 2
B. m = -2
C. m = 1
D. m = -1
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(0;1;1), B(1;-2;0), C(-2;1;-1). Diện tích tam giác ABC là
Trong không gian tọa độ với hệ tọa độ Oxyz, cho ba điểm A(1;2;-1), B(2;-1;3) và C(-3;5;1). Gọi điểm D(a;b;c) thỏa mãn tứ giác ABCD là hình bình hành. Tính tổng T = a + b + c.
A. T = 1.
B. T = 5.
C. T = 3.
D. T = -1.