Trong không gian với hệ tọa độ Oxyz cho hai véc tơ a → = 3 ; 0 ; 2 , c → = 1 ; − 1 ; 0 . Tìm tọa độ của véc tơ b → thỏa mãn biểu thức 2 b → − a → + 4 c → = 0 →
A. 1 2 ; − 2 ; − 1
B. − 1 2 ; 2 ; 1
C. − 1 2 ; − 2 ; 1
D. − 1 2 ; 2 ; − 1
Trong không gian với hệ tọa độ Oxyz, cho hai điểm M( 1; -1; -2), N(3; 5; 7). Tính tọa độ của véc tơ M N → .
A. M N → = ( 2 ; 9 ; 6 )
B. M N → = ( 2 ; 6 ; 9 )
C. M N → = ( 6 ; 2 ; 9 )
D. M N → = ( 6 ; 2 ; - 9 )
Trong không gian với hệ tọa độ Oxyz, cho bốn véc tơ a → = 2 ; 3 ; 1 , b → = 5 , 7 , 0 , c → = 3 ; − 2 ; 4 và d → = 4 ; 12 ; − 3 . Mệnh đề nào sau đây sai?
A. a → , b → , c → là ba vecto không đồng phẳng
B. 2 a → + 3 b → = d → − 2 c →
C. a → + b → = d → + c →
D. d → = a → + b → − c →
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;3; - 1) và B( - 4;1;9). Tọa độ của véc tơ A B → là
A. ( - 6; - 2;10)
B. ( - 1;2;4)
C. (6;2; - 10)
D. (1; - 2; - 4)
Trong không gian Oxyz, cho hai véc tơ a → = − 4 ; 5 ; − 3 và b → = 2 ; − 2 ; 3 .
.Véc tơ x → = a → + 2 b → có tọa độ là
A. − 2 ; 3 ; 0
B. 0 ; 1 ; − 1
C. 0 ; 1 ; 3
D. − 6 ; 8 ; − 3
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P): x - 2y + 3z + 3 = 0. Trong các véc tơ sau véc tơ nào là véc tơ pháp tuyến của (P)?
A. n → = 1 ; 2 ; - 3
B. n → = - 1 ; 2 ; 3
C. n → = 1 ; 2 ; 3
D. n → = 1 ; - 2 ; 3
Trong không gian với hệ tọa độ Oxyz cho u → = ( - 2 ; 3 ; 0 ) ; v → = ( 2 ; - 2 ; 1 ) , tọa độ của véc tơ w → = u → - 2 v → là
A. (-6;7;-2)
B. (6;-8;1)
C. (6;3;0)
D. (-6;3;0)
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y - 2 1 = z + 1 2 nhận véc tơ u → = a ; 2 ; b làm véc tơ chỉ phương. Tính a + b
A. - 8
B. 8
C. 4
D. - 4
Trong không gian với hệ tọa độ Oxyz, cho a → = 3 ; - 2 ; - 1 , b → = - 2 ; 0 ; - 1 . Độ dài a → + b → là:
A. 2
B. 3
C. 1
D. 2