Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;-2;3) và đường thẳng có phương trình
x + 1 2 = y - 2 1 = z + 3 - 1 Tính bán kính của mặt cầu (S)
có tâm A và tiếp xúc với đường thẳng d
A. 5 2
B. 4 5
C. 2 5
D. 10 2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 2 = y - 3 1 = z - 2 1 và hai mặt phẳng
P x - 2 y + 2 z = 0 ; Q : x - 2 y + 3 z - 5 = 0 . Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).
A. S : x + 2 2 + y + 4 2 + z + 3 2 = 1
B. S : x - 2 2 + y - 4 2 + z - 3 2 = 6
C. S : x - 2 2 + y - 4 2 + z - 3 2 = 2 7
D. S : x - 2 2 + y + 4 2 + z + 4 2 = 8
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = t y = - 1 z = - t và 2 mặt phẳng P , Q lần lượt có phương trình x + 2 y + 2 z + 3 = 0 ; x + 2 y + 2 z + 7 = 0 . Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng d, tiếp xúc với hai mặt phẳng P và Q .
A. x + 3 2 + y + 1 2 + z - 3 2 = 4 9
B. x - 3 2 + y + 1 2 + z - 3 2 = 4 9
C. x + 3 2 + y + 1 2 + z + 3 2 = 4 9
D. x - 3 2 + y - 1 2 + z + 3 2 = 4 9
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = t y = - 1 z = t và hai mặt phẳng (P) và (Q) lần lượt có phương trình x+2y+2z+3=0; x+2x+2y+z+7=0. Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng d, tiếp xúc với hai mặt phẳng (P) và (Q).
A. x + 3 2 + y + 1 2 + z - 1 2 = 4 9
B. x + 1 2 + y + 1 2 + z + 1 2 = 4 9
C. x - 3 2 + y + 1 2 + z - 1 2 = 4 9
D. x - 1 2 + y + 1 2 + z - 1 2 = 4 9
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y + 1 3 = z - 1 - 1 và mặt phẳng ( P ) : x + 2 y - 2 z = 0 . Phương trình mặt cầu (S) có tâm I ∈ d, tiếp xúc và cách (P) một khoảng bằng 1
A. ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 1
B. ( x + 3 ) 2 + ( y - 2 ) 2 + ( z + 2 ) 2 = 1
C. ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 2
D. ( x - 3 ) 2 + ( y + 2 ) 2 + ( z + 2 ) 2 = 2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y + 2 1 = z 1 và mặt phẳng P : 2 x + y - 2 z + 2 = 0 . Gọi (S) là mặt cầu có tâm nằm trên d, tiếp xúc với mặt phẳng (P) và đi qua điểm A(2;-1;0). Biết tâm của mặt cầu có cao độ không nhỏ hơn 1, phương trình mặt cầu (S) là
A. x - 2 2 + y - 1 2 + z - 1 2 = 1
B. x + 2 2 + y + 1 2 + z - 1 2 = 1
C. x - 2 2 + y - 1 2 + z + 1 2 = 1
D. x - 2 2 + y + 1 2 + z - 1 2 = 1
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng điểm I(–1;–1;–1) và mặt phẳng (P): 2x – y + 2z = 0. Viết phương trình mặt cầu (S) tâm I và tiếp xúc với (P)
A. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng điểm I(–1;–1;–1) và mặt phẳng (P): 2x – y + 2z = 0. Viết phương trình mặt cầu (S) tâm I và tiếp xúc với (P)
B. ( S ) : ( x + 1 ) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 4
C. ( S ) : ( x + 1 ) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 9
D. ( S ) : ( x + 1 ) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 3
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng điểm I ( – 1 ; – 1 ; – 1 ) và mặt phẳng ( P ) : 2 x – y + 2 z = 0 . Viết phương trình mặt cầu (S) tâm I và tiếp xúc với (P)
A. (S) : (x+1) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 1
B. (S) : (x+1) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 4
C. (S) : (x+1) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 9
D. (S) : (x+1) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 3
Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;1;3) và đường thẳng d có phương trình x - 1 2 = y - 2 - 1 = z z . Mặt phẳng chứa A và d. Viết phương trình mặt cầu tâm O tiếp xúc với mặt phẳng (P).
A. x 2 + y 2 + z 2 = 12 5 .
B. x 2 + y 2 + z 2 = 3 .
C. x 2 + y 2 + z 2 = 6 .
D. x 2 + y 2 + z 2 = 24 5 .