Trong không gian Oxyz, cho hai mặt phẳng α : x-my +z +6m+3=0 và β : mx +y -mz +3m -8= 0 (với m là tham số thực); hai mặt phẳng này cắt nhau theo giao tuyến là đuờng thẳng ∆ Gọi ∆ ' là hình chiếu của ∆ lên mặt phẳng Oxy. Biết rằng khi m thay đổi thì đường thẳng ∆ ' luôn tiếp xúc với một mặt cầu cố định có tâm I (a;b;c) thuộc mặt phẳng Oxy. Tính giá trị biểu thức P = 10 a 2 - b 2 + 3 c 2
A. P =56
B. P = 9
C. P = 41
D. P = 73
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng d là giao tuyến của hai mặt phẳng ( α ) :x-my+z+2m-1=0; ( β ) :mx+y-mz+m+2=0. Gọi Δ là hình chiếu vuông góc của d lên mặt phẳng (Oxy). Biết rằng với mọi số thực m thay đổi thì Δ luôn tiếp xúc với một đường tròn cố định. Tính bán R của đường tròn đó.
A. 2.
B. 1.
C. 4.
D. 3.
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng d là giao tuyến của hai mặt phẳng ( α ) : x - m y + z + 2 m - 1 = 0 , ( β ) : m x + y - m z + m + 2 = 0 .Gọi Δ là hình chiếu vuông góc của d lên mặt phẳng (Oxy). Biết rằng với mọi số thực m thay đổi thì Δ luôn tiếp xúc với một đường tròn cố định. Tính bán R của đường tròn đó.
A. 2.
B. 1.
C. 4.
D. 3.
Trong không gian Oxyz, cho hai mặt phẳng ( α ): x+y+z-1=0 và ( β ): 2x-y+mz-m+1=0, với m là tham số thực. Giá trị của m để ( α ) ⊥ ( β ) là
A. -1
B. 0
C. 1
D.-4
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng α : x + y - z + 1 = 0 v à β : - 2 x + m y + 2 z - 2 = 0 . Tìm m để mặt phẳng (α) song song với mặt phẳng (β).
A. m = 2
B. m = 5
C. Không tồn tại
D. m = -2
Trong không gian Oxyz, cho hai mặt phẳng α : x + 2 y − z − 1 = 0 và β : 2 x + 4 y − m z − 2 = 0. Tìm m để hai mặt phẳng α v à β song song với nhau.
A. m = 1
B. Không tồn tại m
C. m = -2
D. m = 2
Trong không gian Oxyz, cho hai mặt phẳng ( α ) : x + 2 y - z - 1 = 0 và ( β ) : 2 x + 4 y - m z - 2 = 0 . Tìm m để hai mặt phẳng α , β song song với nhau
A. m = -2
B. Không tồn tại m
C. m = 1
D. m = 2
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng ( α ) + x + 2 y - z - 1 = 0 và ( β ) : 2 x + 4 y - mz - 2 = 0 . Tìm m để hai mặt phẳng ( α ) và ( β ) song song với nhau.
A. m= 1.
B. Không tồn tại m.
C. m = -2.
D. m = 2.
Trong không gian với hệ trục tọa độ Oxyz, gọi (α) là mặt phẳng chứa đường thẳng ∆ : x - 2 1 = y - 1 1 = z - 2 và vuông góc với mặt phẳng (β):x+y+2z+1=0. Khi đó giao tuyến của hai mặt phẳng (α), (β) có phương trình
A. x - 1 = y + 1 1 = z - 1
B. x 1 = y + 1 1 = z - 1 1
C. x - 2 1 = y + 1 - 5 = z 2
D. x + 2 1 = y - 1 - 5 = z 2