Trong không gian Oxyz, cho hình lập phương ABCD.A’B’C’D’ sao cho A ( 0;0;0 ); B( a;0;0 ); D ( 0;a;0 ); A' ( 0;0;a ). Xét các mệnh đề sau:(I): x + y + z - a = 0 là phương trình mặt phẳng (A’BD). (II): x + y + z - 2a = 0 là phương trình mặt phẳng (CB’D). Hãy chọn mệnh đề đúng.
A. Chỉ (I)
B. Chỉ (II)
C. Cả hai đều sai
D. Cả hai đều đúng
Trong hệ trục tọa độ Oxyz, cho d là giao tuyến của hai mặt phẳng x - y + 2 z - 1 = 0 và 2 x - z + 3 = 0 . Mặt phẳng (P) đi qua d và vuông góc với mặt phẳng (Oyz) có phương trình là
A. -3y + 5z + 5 = 0
B. 2 y - 5 z + 5 = 0
C. -3y + 5z = 0
D. 2x - 5y + 5 = 0
Trong hệ trục tọa độ Oxyz, cho d là giao tuyến của hai mặt phẳng x − y + 2 z − 1 = 0 và 2 x − z + 3 = 0 . Mặt phẳng (P) đi qua d và vuông góc với mặt phẳng (Oyz) có phương trình là
A. − 3 y + 5 z = 0
B. 2 x − 5 y + 5 = 0
C. − 3 y + 5 z + 5 = 0
D. 2 y − 5 z + 5 = 0
Trong không gian Oxyz, cho mặt phẳng ( P ) : x + y + z - 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Đường thẳng d’ đối xứng với d qua mặt phẳng (P) có phương trình là
A. x - 1 1 = y - 1 - 2 = z - 1 7
B. x - 1 1 = y - 1 2 = z + 1 - 7
C. x - 1 1 = y + 1 - 2 = z + 1 7
D. x + 1 - 1 = y - 1 2 = z - 1 - 7
Trong không gian Oxyz, cho đường thẳng d : x - 1 2 = y - 2 1 = z + 1 3 và mặt phẳng (P): x+y+z−3=0. Đường thẳng là hình chiếu của d lên mặt phẳng (P) theo phương Ox có phương trình là
A. x - 2 2 = y - 2 - 1 = z + 1 - 1
B. x - 2 4 = y - 2 - 1 = z + 1 - 3
C. x + 2 2 = y + 2 - 1 = z - 1 - 1
D. x + 2 4 = y + 2 - 1 = z - 1 - 3
Trong không gian Oxyz, cho điểm A(1; 2; -1), đường thẳng d có phương trình x - 3 1 = y - 3 3 = z 2
và mặt phẳng (a) có phương trình x + y - z + 3 = 0 . Đường thẳng D đi qua điểm A , cắt d và song song với mặt phẳng (a) có phương trình là
A. x - 1 1 = y - 2 - 2 = z + 1 - 1
B. x - 1 1 = y - 2 2 = z + 1 1
C. x - 1 1 = y - 2 2 = z - 1 1
D. x - 1 - 1 = y - 2 - 2 = z + 1 1
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P = x + y + z − 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z − 2 − 1 . Đường thẳng d ' đối xứng với d qua mặt phẳng (P) có phương trình là
A. x + 1 1 = y + 1 2 = z + 1 7
B. x + 1 1 = y + 1 − 2 = z + 1 7
C. x − 1 1 = y − 1 2 = z − 1 7
D. x − 1 1 = y − 1 − 2 = z − 1 7
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 2 2 = z - 3 1 và mặt phẳng α : x + y + z - 2 = 0 Đường thẳng nằm trong mặt phẳng α , đồng thời vuông góc và cắt đườn thẳng d có phương trình là
A. ∆ 3 : x - 3 3 = y - 2 - 2 = z - 5 1
B. ∆ 1 : x + 2 - 3 = y + 4 2 = z + 4 3
C. ∆ 2 : x - 22 1 = y - 4 - 2 = z - 4 3
D. ∆ 2 : x - 1 3 = y - 1 - 2 = z 1
Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x+y+3z=0, (R): 2x-y+z=0 là:
A. 2x+y-3z-14=0
B. 4x+5y-3z+22=0
C. 4x+5y-3z-22=0
D. 4x-5y-3z-12=0
Trong không gian Oxyz, cho mặt phẳng (P):x+y+z-3=0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 Hình chiếu vuông góc của d trên (P) có phương trình là
A. x + 1 - 1 = y + 1 - 4 = z + 1 5
B. x - 1 3 = y + 1 - 2 = z - 1 - 1
C. x - 1 1 = y - 1 4 = z - 1 - 5
D. x - 1 1 = y - 4 1 = z + 5 1