Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x - 3y + z + 2 = 0 Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng ∆ vuông góc với mặt phẳng (P)?
![]()
![]()
![]()
![]()
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2y+z=0 và đường thẳng d : x + 1 1 = y 2 = z - 1 . Gọi ∆ là một đường thẳng chứa trong (P) cắt và vuông góc với d. Vectơ u → = ( a ; 1 ; b ) một vectơ chỉ phương của ∆ . Tính tổng S = a+ b.
A. 1
B. 0
C. 2
D. 4
Trong không gian Oxyz, cho đường thẳng (d) vuông góc với mặt phẳng ( P ) : 2 x - 3 z + 5 = 0 . Một vectơ chỉ phương của đường thẳng (d) là
![]()
![]()
![]()
![]()
Trong không gian Oxyz, cho đường thẳng d : x - 2 3 = y + 1 1 = z + 5 - 1 và mặt phẳng (P):2x-3y+z-6=0. Phương trình nào dưới đây là phương trình của đường thẳng nằm trong mặt phẳng (P), cắt và vuông góc với (d)?
![]()
![]()

![]()
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng P : 2 x - y + z + 3 = 0 và điểm A(1;-2;1). Phương trình đường thẳng đi qua A và vuông góc với (P) là:




Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x + y + z - 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Gọi ∆ là hình chiếu vuông góc của d trên α và u → = 1 ; a ; b là một vectơ chỉ phương của ∆ với a , b ∈ ℤ . Tính tổng a+b
A. 0
B. 1
C. - 1
D. - 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x+y+z-3=0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Gọi ∆ là hình chiếu vuông góc của d trên α và u → = ( 1 ; a ; b ) là một vectơ chỉ phương của ∆ với a, b ∈ ℤ . Tính tổng a+b.
A. 0
B. 1
C. -1
D. -2
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-1;-2;2), B((-3;-2;0) và mặt phẳng (P):x+3y-z+2=0. Vectơ chỉ phương của đường thẳng d là giao tuyến của mặt phẳng (P) và mặt phẳng trung trực của đoạn AB có tọa độ là:
![]()
![]()
![]()
![]()
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 1 1 = y - 1 2 = z - 2 - 1 và mặt phẳng (P): 2x+y+2z-1=0 Gọi d’ là hình chiếu của đường thẳng d lên mặt phẳng (P), vectơ chỉ phương của đường thẳng d’ là
![]()

![]()
![]()